‘gol"‘l ’ § O Oftwioste Enamﬁwr)ﬁ‘[g £)
(owee € =
A6CS0A

OMT- 4

tok - T . .
Tploduction o So?’wome ‘Ef\gmeeznng

o e evolwing wole o S%aﬂe)
9, Chaogmg Notyue O(r S/Lu o
B sothwooote Myths

o -7
A Genestic View' of Process

O Slw Qngmeemng ~ A O(He%ed’ ieaZnolqgly
@Amtrﬁm?fﬂmewoxk Dd .

© Te copobils 16y Ma{umbd m%{;egxah’m (CMMz)
sk - Uy e v
Psocess Modele: / '

® Te %\a@éﬁfétf. Model
@ Spisal Modet |

@ Agile Me('%)odb(@gff\'

»
ui‘.{f g

collecbon .of- in ke%%d;;

. Slw subseedt Lmo:‘n%am.prwwb).‘ csé meﬁu(fg |
'o‘fgqm‘sed gy ingkuchons ond Cpo(q mfemgy |
develgpess O MY of \ORIOUS, Foﬁ{)wm conmp
Languogeg. ‘ o i

. Computest progeoms and weloted - docimentatn,
awch ok fzf@gm‘xemeq-!;s , design odéle andl: ces
ranuals.) I

: Eﬂg{ﬂeemﬂa K ’Hﬂe O(Pp];‘caéfm Rﬁ‘ 39 mﬁ%@. [
ond practiaal knowledge, o l"iﬂ\/ef,’\,&::f design,
puild | eaarobain and impyove frame wosks, |

¢

processes etc:

oS of bwouse Ergineering, | . ke
S-€ is an engineenng byanch seloted. t

e evolubon O Sofhoose poduck LAY

toell- dehned seienbiic (fﬁiﬂdﬂexk,ﬁﬁc%nigu@s afy

Prdcedlustes .

BRI

| |
@e %utk of &o‘fr%wane Q\gff\Qeﬁ'ﬁg“rls an

QWCHUe ond weliokle §(o puodluck
ool D

SU(;WQ ok low cook! |
oThe 6Euolving w0k of o Sthaste
Qo takes diol wole. B i both o gyt
Omfj\ o \fgfxic[e (V'O”DCQSSD oré deliuiam‘og o
duck - LT
f o pIUIULE 2€ delivent e computng
potentiot inclice by Computest " rasglunne (o)
Ly o netwoork o Omputers.
Be o wehicle ' TE ic infsmodion B Restres -
‘Wdudﬂg , rﬁoh@g:b‘g , aci@w'ﬁbﬁ umod;ﬁdmg)
digoging 9 tammithing o Foonadion, thod
Con ke O &1’(Y7P(8 o £1hg(e bt Lozf) ad

Ccomplex o3 o multinedo prEeotaton.
&F&ﬁ@e delivers the riast npystonk ’ Pavdluct
of- Qua time - infmation. T .
- Tt bsansfmemyg pessonal daton ‘

S Tb anages business infamnotion fur enhante
Wpe{’q‘%h/emmr .

'““’/{,;
s Tt P'bU\”deJ a 80—&’ (UQ(J {0 LOU\AO(LUIO’Q

infusnakion nefuoowks:
- TL paovides the MRANS fof acuining rnﬁO%

f :

Me yole ob compuler sl oy Und?ﬁig o

Qignificant change ovest @ gpan of [ite
mMose than - H0 yeors.

 Dvomodic improverentt 0 h&iﬁdmbe Pe?,;m
poofound chonges 10 carapudent 061%:&@&4}(@
\Vort incepses 10 MemoTly angd Stospge ‘C‘Pa
and o code- vosdiely Of exhaubre mpug&bf

ouew\% eptions hove g sophishaded ang
Complex Q(‘mpuf@% bﬁb&@ &yf&m

The . lone psoprmmen ob 0N Qaﬂf&m et iw
ben wplaed by a team of slw Specialjsy
qch ?oc,w&mg 0N One pa%Jr 0 the fﬁcﬁmofo
séouired fo delvex a campex applitatin. r‘?nd
ye{i '\’P\e SOf)’JQ %L&Sh()ﬂs asked by H;Q[
pmgmmm@% cm@ bemg aéked b%en m@(@m
o Compittesr bagey 8y£f€rm e burll

)‘f\% does it fokes g (bng fD ge&g
)%m&hed 2

~3 . Why - oo dle,\rdopmefzé cests <o ;“31’ 7
- Wy @'t we Bnd all the deing behme

4

o (s torerse 2

()€ 9{\"6 the S/w
W Why do ue continue 4y howe A
 TRBANG PaOGuess ak oy g 4, s
"R O
Jevelopd A

\1’ -

“Tnese o Yony otfest westions osie 72
monfestotion s the concesy aboout c¢fy,
b e 0D 0 itk 1 duplged,
(lnday ; o FMQ@ JI industsy has Lecorme o
o‘@m\‘ﬂ&ﬂjc fotkoy in e etonpmies of the
[ngdusteodi ced world . |

p—

(hangmg ﬂa'fu&(e ﬁé \(’Oﬁ{"WCB(g

f{lHC Aohuee of Slw has Ghonged a lob oires,
fe Yes Seven bwood ol €qoEich ok (onmpu ke
sfw continuing Chal(mges fos cobtuooste engineers
[&\JS{Cm (NI

7. ,App\\'(?o\\'oﬂ §lw |

2. Enginees / SC(PM“{Q'(, .S’/w._

A {_”mb?dd@d Slew -

5. Product « Gine slw

6. Web Applicationg -

7. Asthaal TnEENrgence Sho

[System Sobhuoae. .
Systern Sobhose & a cdfec{:on op Pm:gzso%

wm&m §'0 Sevnriee Bthest progzams . The Sgﬂéem

g{w (g {%e mée'Sﬁch bl -the honduxse and

ULt o(pplvca‘nms‘ the operating system & the
besk known example 0‘64 Sgg‘&m Sl .

__g Mlcmo;;{- wmdows comp[/ezg Edtfnag

Q- A?phcaJqu Dftonsie - X
Applicakion oPtwane conersk ‘of standalone

programs that solve a- specific buwiness need-

* fipplicakions iy this ostea’ paocess « business (oo)

techaical doter a0 WaY that faclitabes e

Opena’oong lms) manaq@menf (Ur) Efchnm[decision making,

.'.\ < N Y

conventional dako procer;,
s used to Cm&sU &mmeﬂ gnd,

\

. ©h oddition o
apACOR0N slw
o weal- time -

£q: Poink - Of - sale mrxeachon mvce@og Reﬂlbfr
ooubatkiin] pocess - conteol.

2. Ebedded Softwove

3. Cngineewing [Seientifc Seo
Enginewng [screntific < “sobistes H{\Q o

o o guenhﬁc (%) engmeemn@ usest o penfyy |

enteiprise - cpecibic tatks, Such ofhwose s otk
for specibc agplications waiNg poinciples ‘cechmgues L
eysudoe posrticulose o that. Retds |

. Howoevest, modestn OKWI'QOLHU”S within the ergmgemf?
ccienkific ovea aste mo\““ﬂ S ‘E‘Um m\’enhum.

,qumeamt “odgoxithms.
49 MAT .LAB AUTOCAD PSPIQC: ,DRCADek

4. Embedded ‘Slw

Einbedded” Slu ﬁepdes m\Unm C\ pzmo(ucﬁ) sg:b
ol s Lsed Jm |mPlemenE omd conkol. Leahst
ond funchion fo the end usexn and Fw fhe

syskern TRelf
. Tt con peshorn

s [imited cand: e&oﬁﬁmc ﬁ,lncﬁ@ns(ﬁg kbgbm‘j

contwol For . MICEOLIAVe ovem)
t Provide gignifcant Junchion and oonhsef

as fuel conbol , dosh boosd dicplays 5 b7

f

:

-copetbility’ gg; Digrtal funchons i " o]

&
s\dg'{’ﬁfm ')

5. Poduck - line &Dﬁ'&mne |

Odw{whﬂe 3(03 i_c. de&lg")eo) +D pmmde o)

S‘PC“F’c copobility ‘€075 Lae ’OH many drfﬁezferré
Cu‘btomeﬁg
, Nodudk - (ine. Shw, c@an

>*§ po(‘/u,& Oﬂ 8 |WH6€O‘ Of')d egoéemc ,Ymke!: PIQCQ

2 Trventosy Conko| pooducks |
(ox)
s ACOTES Moss consurer ma%ke(:
£9: Ioad pr0ceseing ,SWEMSB@;& compu\ce%
ggophics , mulbimedia | enéest%ammené
dotobase manogenent , perconal and ba_qneﬁ
,%nanual app(r azﬁom B 4 |

6o Neb 'PrWhCa}\om L o

- \ | 4

e Soﬁhmhe lselc(‘cedl ffo wer corme. una’eg e

Cotkegosy -
8. (&T 5 HTMI, S‘AVA "PERL, DHTML ete,

"-"Nel: Applca{‘rom 001e emlwﬂg mb) Sopbuﬁm{ed
'Cbmpu%mg e,nv/zm/)menés ot ot Oﬂ(&/ pzmmde
'S{ondalone ?-Qabuses compwhﬂg EEW?C& U?s Qf?d
Wnkenk o’ Hhe end e , buk aLso ane
mfce.gn’OI{Qd w:‘H) Coa’Poefo&e O‘aﬁaE:OSe aao’
business applicabipne.

. Akifad Tnletligene Sobtoaste

Autificiol Gkelligente Slb mokes wse o non-

V\UTY?@UCQ{ a(gomkhfﬂi fo § e wf}’lp(ex PJUHQIYE

ol ave not amenakle 4o wmpuéaiwon (0x)

Shraugft foswosd - onoligsic

. Applicokion coithin ~hic cuteo. tncludes wbobics

1 eyperd sysdtemic - pattesn wecognrfion (image & Vorce)
ootkifeiod newswl rietworks ’rﬁweoﬁe/ﬂ peoving and
gome ploving -

[agals> |

B Sothwose Mgﬁws

S[w mw”n& - be,heﬁs QbOUE S[w Omd @P PTOCESS Uge]
o build £ - aon be dsaced Go Hne eagﬂekg{
qug oty C[)mPULJmﬂ Mvﬁ‘)g have o numbe;, G(r
“obsibudee thorl hom modle ther m&dlDw

e ARE; kf)ﬁw‘fedgaéie pavressonals - 'D’GCO‘&"ltse
mUthe fox what they e Misleading attyipyly
ot haie couted <émows pypblens @F’w izl
and {echmcaﬂ people alike 'HDc,oeve%) o aé@,g @)
an05 hab ke oo oltﬂ%cuh? 10 YYIOdtﬁH ond “emnan:fj{
o o rgthc ovte Shll beleved.

4

W’ N - | \
)Maﬂo\ae”‘e”‘ Mu’ths | -

Mld{h 14 e, Ok[’ZjEOdy /)0(\/@ " bw’, C@;ﬁ(((
oy standosals 20 D Cedum’ Jox buclding sho,
uJOr?% J(F?a{ ﬁm\nde mamd P€Ople thn eve“’tfﬂ'rnf‘
they ﬂeed ’i‘o know 2 o |

ity - The book op Slandandle” raay veswy welt |
evisk , but & € wed 2 Age ., ¢l practiones,
awose 06tk QWS{QOCE 2 Qoeg it weleck b

mode&m S[uo engmeezs rro‘acﬁce ? T it wmpfe{e 7
ik chredmline to irmpoove ke and o
delivewy while chill mam{oumna a " Focus on
t?ua[:bd 4 Ve f‘ﬂﬁﬂf/ CO&Q-S “ﬁwe oncwen 4o CZUO{y
Hheke %@ﬁm Gpg? s oo
Mgthlh TE o 9@& “behind ' Schedule e an

| ado\ mozfe pmgzsammezm ard Ca{c_h uP |
RQQ\\’CH Sl o\e,\/e(t)pmeﬂE 1& no& o MQchan,S{.,C

- pucess [ike mmuﬁac&mﬂ@ '

" Adding people B o bt @oﬁéwcme pm:uecé makeg it
Lok, Ab ﬁm& the s(on‘emené may Seem B
| CDUnEE’J% m’cwbue HD(,OQU% oL I‘)ew p@@ﬁ(é e
added . ()QDP’Q who . Lese wowkmﬁ ek RN
Hme educahﬂg the new comess H)e}(eéy
- seduccng Tthe arount ot time cpent on pxod'uchw

d%\fdﬁpmen‘c- effoxt. %OPIe can ‘62 added but

only ¢n o planded and woell COOU‘dr()O(Ged mannes .

| “——

Myth 3: T8 @ decde fo outtousiee the, sluo
psoject W o 'Hmsd ooty , T QoD gu;k fqox
Omd ot that & butld - £, - AN

Roolity + 3% 0N ovgamzoﬁon does " not undezﬁnr)ga
how Ao Monage ond tonksol Sfw ponjecks
enoly & il iMooty stuge uhn

ouboowces: slw ¥ jecks.

) Custorrest Mythe
Myth1 : 7 Qengal s&a{emen% o objeckiuey ¢
Pgu%o(en% to" beg Umﬁ"”a p‘mgmms we can

pal in the detols (aft i

. fenlity: A poor upﬁrm{: o{eéqmé\on ' h‘%e
comge of Foiled lus--effosts. 4 Formol and a(efg.led
d&mPhom 5(; the | mﬁoﬂﬂaﬁaﬂ dormm ﬁu%{wn
behoviousy paﬁﬁmrmaoce ,m{ezfﬁaw da&ngn COrub”arrEg
and mlrdahoo Cuifestion fs. esoentinl . "/7-,&(@/ |
Chowackeschics n be o\eéemmmeﬂ only e
thoough commumca%on bQPuJQeﬁ @wg&)m@ as aq |
o(evdopeﬁ .

ng% Z Fmgec% K&fgamemen& conbnual[(c/ c%arzﬁe
bu’c Chcmga can be ea&[y accomedated b@cauAe
TS H‘imbfe NPT

ba[!'éy T& 1§ {\O’LLE’. H)C& &[Lo Keguf\(emgnk cAarye,

ou% *Ude mnPOLCe oG-, C’?O«f)ge wﬁ\@?%@ colth

lLU'YIé O('(L L(%]_[lé\ AT lnmdu&dn %€ﬂ~J

l

raéfZLt'\zsemen% Changes “ae egueled eordy (e,
Jesign * 08 code hot beep 's‘ca%ed) Cost e
i welabively emalle Hogpygs <oy g
the cost” ‘mpack eroug ¥api
been commitked and Q- CTGSI'gn Fome. LbO?rk'ha,g
Loen establiched “and 'Change ‘N covse etpheap

thot sequis®s addibonal veaousces apd moy0y
design modifcatione . LR

cmpack
passes,
Y- Fesoior @S boy,

i) Prachitioner’s Mythy |

Muth 1 Oree Loe toxite the progyom and et
o wosk, oW job i done. |
Reality 1 Sovieone 'onee aid that " he oonest |
tdou began : m.ﬁ‘"ﬂﬂ codle ’,'"H’we‘ .Fooger -r%'w:'.((
+ake you oo get clone ” Trohaby dota |
indhade “Fho\kab;hueem €0 &80 pexcert & all

xpended an iy will v be. expenpled o

@f_&fﬂi 5@ Ee}/Eﬁ o, fhec(f%gl? the F:'j‘(@ze ”g{e:feagﬁf&%
Myth 2« Upkl -2 get. «the pIy0ggam suoning T have
no Loay ok ASLELL (1] - ke @ua&‘éﬁ.; w :
Keolity: Ope of "the MOsk-effrective sl quoldy -
A8¥wiance mechanisms an' be »QPPll‘eéT '.f%um"’%e
incepkion 0k o poojectt — the Formal. techpiog
vevieLy (RTR). Sleo wetniews ae o Qualily flles
that hove been found to. ke Muse effeckive, than

g R Finging, cortain, classer of - Sl exavs.

| .

|

Myth 3 fhe Only delivexable otk PSDOuct fm(
b - et @RM pyoject ¢ ﬁ'\e toorking - ngwqm
A+ Loo¥king progrom is 0Nly orie pou
in’&l cleo - conprquischion , ek includes g
elemenks . Documertation paovidles a fuund%b

fow . Sumeatful. engineemng - ord o 'MPWW
gwdonce Py slw; QUPPO?{ |

ook <1
Gloneric \iew of p?rocemmg

\ .
i @ SD%pOtS{Q Engmeemr@ & (ageﬁed TEC/)OO(

. Selume Eﬂfameemna 1S <the estaf z&Bm@O{— Qndy

4 0k Sound enginetsing - principleg 'in o8den 4o
Ob%alﬂ CConomitally ;5 SotHtuoose fhat ?S%OB\Q

g and toodks- Q@%luenkﬂd on “ﬁod macﬂnna;

| Bowess definikios provides i wiy o baseling . -

=y What * gaund engineenig pinceiples ' ears be Opplied
t Compules Slto glwglapmen{? RN,

—5 Fiow do e QCMOMIQQJ(y a budd Sﬁé{wqwe o
Haal i weliable” 2 SRR

e 1hak i vepuised o csanke ' computes mvgmm
{F\ae LIJO?d(e@&rﬂﬂn[ﬁ/ on F)Dq' vNe éh& W,y
d,%qﬁmf e mOChl%%" p s, 4159

/R%ﬂ, axe ‘@[e %ng 'thO&E Cﬂﬂhfluﬂ, {O Cht)\((erge wengmewa

\l/hi’ TCEE devé[oged o mBse aemmeﬁensﬂ)e
dgﬁlmhon Whers ik cloles Scttwarne Enqln@emg

i ¢ (e Q7PI|CQ‘€I0V) Oy O S’HSkem i‘lC’
c;tmﬂhgo‘b\e appach 4o Yo C‘y(’\/e(o
g moinkainence 86 slus, ot
g, € ngineexing fo Slw.

dl&gplme
PMerk CPEchrth
s the aplicabion

¥ The &JCUdH oF QPWDQQB?S M 1N H)G O\IGOVE deﬁmé"n

Colstuaoue. eng(neemna s o (oyered ﬁdmo(ogj

(ools

e -
Y thmeemng apmac’) mLUG L on an
m(ao\m&aht)no\(COMmitment to zuat,fy The beo’wck

that <uppowts ¢. ¢ g a Quality ﬁo%
8- Fiocecs ‘

The foundobin foy . € (. 'H')Q PWDC&“ (“9@'6’3 ¢
PiDcess s e glue thot " holds the echnology- (agexs
tDSeHoeﬂ it enables mhoncw - ﬁma&/ de\/e/ol:m;/z{
A Cﬁ‘rY\PLL‘{'@T olw, Psocess deﬁﬂﬂf X meewoxk

Yot musk be edloblesh fos elbethve dels NQY‘:! 06 L,

CNOInoosna et hnmnlman

The Sl o0y fooms the bast for gy
conel oL s Ponjeck B establishes bie cny,

N whith | .

& Technical me}@\(ﬂs o applied: -
& Wosk modudr& co\e PI0ducey R

% Miledones are eslablisheq

& Qualiby © ensuse/ arol |
%-Chan@e.ﬂ"pmp@r{y mgtna‘ged._ N1

3+ Methods |

S.e methods POVida fhe. -eechn,m("how foly
fos building soffoare
Methods encompans a kool amU of kasks thok 1y,

& Communication
& Reguiwements cmafg_l,(.s

a Demgh Modema
R Pm(amm Comlc&u(bm
Qesbng X, Suppot-
Tools | 2 i
& & ouls mro\ude AU toroded
(or) ser-qufy
Cuploorc for the procass ang Ahe mefﬂoc:h | W

When tools ‘are. ieqsitey <o k- infosmaioe.
(5500 3 by ore tod con ke taed by o\nome)wftr&(,
o syplen o e upport of gleo @(Qve(gpmen{ caltf

CEJMWE@\ a[&ed S(w ergmewr@ 3 eé’cab/rw E

s

) Pocess 'ﬁg CneLaork

f’a Uaesr fmmewoxk

T i

Rovewonk ackivy byt

SCaotwonfﬁjq

’lZuk clls

Tk sels

Lliﬁ’k "caAk_y

WOk Paoolucky
‘2&0(("[’3 AUBONte pasds
[03’0\)\?(‘% mr(&ﬂhm)

ook {asks)

| otk prnduch |
Q,uaht-j casuonce foorls

| psojetk mifestoros | ,

Tork cek |

Tosk ok

|
| L PGOW‘QLOCSY((Ct(i'i‘l\hfy Sﬂ/\l
$& otk H N

(Q)Uk -ﬁaﬁak;

- Povjeet milestoneg

uality: csualine k||

S€ othon 2t ap i

-
—e e

‘ —|-
wossk pyoducky Il

g

A pEDCess Frametdok eddabliches the ﬁaundah‘%
hy o complete ofew proess By identifyng o
Small numbesc of feanmecapate - acivities that g,
applible o all sobbwane pavjecks | wegondleg o
fheiy size tov) complexity . Th addition, -the P
Seaneroovk encompassed X set % tmbsel(o 1
ccekivibies that cete opplitakle acsss the enly,
S pyocess
tsorewost Ackivitres
(elewing 4o the hguse | each f0me wpmk ocky
s iacduded By o Lt of sl Qﬂgu‘oeem‘rg qchrw°
QQCJ') 8.6 ochon CQC?»QGOQ Z"Zf x Wk Led; Jtﬁa:&
(dentifes the coodk fouks thod are 4o e complefy)
he wosk produckt thot will be produced, 1,
cssusance poinks ok totll ke Tured, angl the :
Milestones thak will & ted Lo ndicgle proge:
A gﬁneﬁh‘c process ﬁfafﬂeooo”x& fox S-€ debing 5
fromewoodk achuckes
l- COmmuﬂlTah’og -
2 P[Qf)f)r'ng
3 Modeling
- 4. (ons h’b(d‘f(jq
e 5 &Pl@yment—

| Commum‘ca’c\bn !
his promecootk attivrky invelves heavy commniaty,
i hootion cith <t cuskomen and Cloke hifdexs
g ce

P COMPOSS e sQLisevients gathesiry and ottie

Cmf)
Led ot vi s -

be.f@
g Plonntng: | |
T activify - establiches oo plan fos the <luw
engined¥ 9 wosk thot Followes. T descatbes the
Jechoieal task fo ke conducted s the ke Hhal ase
Lkely , the Besowtes that will ke weguyged | e
toosk pyoduck fo be pwodued and o tooskshegylo.
9. MDd@lc‘ﬂa 3 - ' |
This cckivity entmpasses the cseation of models +ok
alow the developese and ctstomen Lo belfen Urdeseland
olus WguerMents and he design: thot Lol achieve Thoe

1

$eguieents.

The mﬁo[ea(g ﬁC'[‘(GVMy t§ CDMPOJ’QC{ Cg €D SE

) Anollyais = T enCOMpaEs. o, sk oF ok Gl

[2g: seguisemenk gathering ellaborodion
negotiphon » spechcation & vald ation)

thot lead +o cweaton .of andlpi rpdel

v) Qecign N encompodtes coprk -éaAkf (clafra

" design, ochitechusal desgn’, intesfoce design
L mepmeok»(eve/f @(5’5(:90) ot creake O
oesign model. -

Ao Combuckon ¢ o TRRPR
m‘n‘f QC'{W‘\/H‘U CO“dE genencbury and the |

{ex-h‘ng thod & ~eguized fo wn VLY the ey,

in the code. |

5 Peplogment :

(\Tﬁe Sl ¢ delf\/ej\ed to the dejrom
Qalugtes the delivesied papduct ovd
feddback Eewed on the eval

ﬂ)&se) geh@u'a ﬁ?omewoak L

Leberh Otw“fu‘f\g the. olevelopm
Do | he cxeokon oy | W‘

and BY the engineenng oy fange | Corvply

cemputen base Syshery. The

Qluo pyocess will he uite dipse

ook the Froneioni ackuibe,

Umbsello. Ackurkeg - v
KU;)E FO([OLOng ajte ‘@)e ge\g@fé umbelth QC‘EEV(‘H&

I+ Sotbame. pwject botking 8. confy . Al
Fhe g(w {eam\b- Q&_sﬂs nggb’egg" aGingt fhe
project plan and fake "Reestony ackon fo -
moitkain SChedule e B

&. R“S\k Manolgemgné: Asses yigk - ‘fho& mq\\j Q%ﬁ fi

< oukcome o the Paject (on) Qolity of the

o5 ‘zg;,O
POVl
uation . |
C‘!i\/f{{e,& can L
ent-. e{ Sall
VGe ok Appliah

5@’7.{- “’_7 Q_QC}) ngjg
"(@/)’la)‘/) G}’ o JCU’H@,

3. Sobkwwoste Qualr &\Lf Aﬁwga”& T defines and
conducks the activities sepyised 4o ensLte.

@Uﬂ[‘hd and al§o ik . pesformy k0N 4y engusye
e prducts gual fﬂ s mainkayy 4ive

cm(p lexitry , & poce Complexity £ oveall qunlity of
thoo WUO{UCE

5 Measusserent Tt deﬁne & cdlecks ond 2GS
Pojeck and product meotusier fhat aSeick tHhe @m
i olehxfemrg S0 ok needs - pustomen's neede can 56
uSed im conduncﬁm OU:H\ all 0{'?\@9(ﬁmmewogk
bmbxella + O\L—(-n\/[heé 7

6 8lw 68171%9119(0’50"7 Wbmgmené fi: rmﬂage; ﬁm |
effecks @1, change f?rmuglﬁu% the Slo procesy.
Manag.ng 0% conhy @um&on PB‘OC@Q‘ & wken an\cf clu@e
N the ¢l 0CCUL . SeM. has Some Kufez &'%echm‘gg
beause Hese aste d%@,en% lﬂl'urzg &bmog Bfes
linking ¢l Fles- 1 mamkam 'Fhe C&ﬂ}g:gu'o’a{-,oq
% all <thete. . AT

7 Rewsobility Maragement :T€ debines cuiteria g,
coosk product serde ond esablishes mechanismy
Lo oachieve weusable LampoNent . ReusoHle. tomy
tos chould ke facked up.

' &2 v L0gin mpclules, bgoulc mo'@{u[e;qi "

g. Wosk WDdU.lCQ (fb”‘ewa%‘m & qu(ugg'm; DL
encompossel the ackvities veguied to (seate
WOk VMUC‘D’ SUC/7 OLA /made[_? ,dowmenkyl%
forne & \igks . Tt paintain the donen“gaJﬂ'ﬁ
of eath & eveny adividy, (4

g CMMi (capobirty _Mabf\%g Modle| Tnlegsation) |
y CMMT & O SuceLo? of CMM | E |
LT o mow evolred model that incogposates
besk comnponents of individual - diel plines o G

- like ¢l c,MM,sgsl;em engineas (MM, pRople LML

L Sice CMM 15 0, tfesene model og raaheed
pockices 10 & specific displings , o & keromés

ittt okegiie, these disiplinet as Pt B

- eguismentt- .
Obeckives o CMMT:

G Eillg uckorey Needs andl - expectaion

9. Value coseoton For iovestons | siock holdors:

3. Mostket ggowdth & intseosed.

& Tmpive) Quality o6 pscdlucks o Smufces(J

-

5@50@(@3 zseputah‘on N Tdenby. - -

CMM’L Repﬁ%eb{ahon

A @p-éeaentahon allpLos an osmmzahon s

puosue & “diffesent b of lmP“DVQMGnP ohjechives .
Tt O foo rﬁepzseéenlcahm; ?m MM,

] Smged Kem@nmhon
g. ContinuOus ’Kepfeéﬁﬂ‘c%un

- Stoged - RQPﬁez»en’cah on |
Uty o pre-defined sk ok poocess . aseox, 'rb

defip impEO\VEMEnt: {Fa{h |
. Provides O sguence tsk \mpwvvemen'(s er\e;se each
ot in ¥oe. SQZUQQCQ &e%ms as o fvurrﬂahon

oy the ﬂQXE
. P |M\’ﬁ0\f€p} paHo is de%ned by ma’rumlrg v,

+ Makusity level dezmbe)s the ma%um{y of

3

ooty i tgonizoi; |
- Stoged MMz @pﬁ%en&lﬁvbm altotat compqmon
blwo dl?@ecenk 7580‘”‘50‘%05 ﬁw mulbpk maw‘mfg

- ovels.

{ Coﬂ%nuobu ﬁep*ﬂegen’(abm
ﬂ{[owx @eechm 6@ SPECJF)C pmcas a%?a
v Do e CQPQ/O;I;{-U [Q\re(s iﬁalr mmwf@-f mem)VQmQﬂ'\'

o md;\ndual p’GUCQiS ovea.
y CDﬂbnqu CMMTI Rep’d?%efl{-ahon cx[OLus @mﬁmfm

| b gippesent cogamizations on o pERes - a0

J by peoces - Oweo, kA
- Nlows osgansatibne {0 seleck poucesces Lo,
seguige .Move \mpmvemer)‘c
TN 'H?\& 75‘1P5€Aeﬂ1‘0{10ﬂ 550\@4 U(f rm(mmw%
\lomOud Peesses con. ke @e[ec%edl wh,dn il Owg
the ovgcinisakions o mee‘c ’H‘\Qw obﬁhw) ml
e \ermynale €isks,

CMMT Model ~ MOr[umhd evdf
T CMMT with ﬁaged ﬁepaseaenkahm ﬂw,e
Hve ma{l(mjﬂd (evels '

O Mo‘mﬂ&g Levet -, gn,g,dt’"

. Pepcestes ane [oomrll{j 0IDged. o5 conbolled
3 Ur)pfeoﬂxtjcaﬁe oukcomes ot pzmcesse_g invi(iad,
- Adhoc and C,haohc, appa'oach wed <
.-—3 No KP/A CCey szoceﬁ ;%ea) ole?med

— ok Q/Uahkv and - ﬁ;glfﬁg% 'G)S?(|

n) Mahm%g level 2. Managed o |
C =) K@puxserneng aste - mar\aged |
o Pocesses ave planned ond conhdled
- Psogeck ove MANoGeeh.. and :mPlemenkff C@Wd
W theis olocumm{eﬁ Pons- .
ey !?[sk Tavolved _in thie level (¢ ioum W”
(thL\ oncel buk SbU le-s o . |

k ‘ it ~ TP A I

| Procestet ooe el chanactented : and st bed
A0 cmndw\(ﬂﬁ P’@OPQH VISDCeduw cmd me%od;
hols et fasis -
5. ’\f‘lf(,lm %lla“{'u Qnd Merum ?ﬂJk ?f]\/o(\/ed
2 fheus P’ODQESS S’ccmdazsd&cr(,oq :
) Mn{um{y Leuet 4 &uanhlca’we!& Managed
5 Quonkitative D‘I:;\,ecf:s ﬂms P?smexg p@hﬂmm&
% j\\,‘-_';i QUO(Hj ooe’ \(\QE % £
5 Quankiobive " ohjechves, o based an o bonies
syguigermenky | 0?{90"“1&6@4 neng,e’ce
Poocecs peﬁ*l?onf\qn(e mwuw am omoc g&ec}
9 uon trkedively .

2 Highest Quality o poocester s ac%zcved
Y (owoex sitkas SEE

V) Mokyxity Lewvel 5% Dphmranﬁ v il

> Conbinuo Lus rmrfwvemen’r (N pwtesr@ moz %w
FQJT?\WY]QOQ@ 4 -

<) ﬂ?mpefovemer)‘(hao to ‘be both mc:&emen&a(ool
innovative - 4 |

~ Hicheck Suality ok prbrees S S BEE

) Lowe,g{: msk Lek T’KDCQL'C&? and 'H-reu(pezsqum

L §

. AJ"-,_I"A; T

A
- - e b ~ |

N e T g%}

CMMT Model - copability tevels:
A copobility el tnclader '6e1€)«[ank- et
and SQOQ%C PfC)LhtES Fos - 0. ~Cpeci hic pmcess Che

-H,\Q 0‘58@01 Za‘h()r)_; ‘Oﬁ‘ﬂmed,

Pk cap pwve
Hwa" PODCRSE awea.

aasos e with o
o5 fos CMMT ‘models ith ConENUOU {5,
thene e Sty CQFlelT'ﬂj levels, e

@ Capab\lltg level 0: Vncomplete -« - ,-

¥ Tnlomplete pPIO®S- pay bolly o oY peshonm
£ One of MOR Speeih T P?OCQ&S a2 A

one Ot met-

#® No genesi® qo0s
¥ This copabll ity
© Qgobl ity level 4. Pex?omed 4 :
o Poocess peshosmOme Moy NoY be stoble.

s Ohjectives Ok ouali @ Jcosk & Scheolule f-;

no%l'ime’f 2 3 hon | 2
@ A Oﬁmbﬂtﬁj wel l WD(QSJ Lg QXPQCted

. peobom ol spﬁufvc ang genestic pochie

s eved. 21 Uf
“Q Oﬂly G &tank SJ(GP }075 WUCCJ'_S erIp‘O‘D
© Capabm’gy el 2 Moﬂageo' o
T & Poocest s P\Onmed monitosed 0(\0\ «
Yo Vbnag;n@ the poocess by ng

Dbﬁc’c\ue: ane achievd.

e gpeafued eo'd thee fev
evel 15 same o mahmkg t,

=
0 ')‘L erhves e ooth model and othey l'ndud:“fﬁ

"ot) uality » Sthedule.
r‘_.(JQ\H mar\agmﬂ PJDCGSSmQ with Hﬂ Wp
m@’(m05 LT 2 . ‘

’
.fo‘

E bty Ry g
N defined pob@se s rmna@ec) and rreols 'f'ﬁQ
" umzaﬁﬁ)hf sek’ g guldeﬁna cmd s%aodcmc{g

v [ocus 1 pzmceﬁ &{Oﬂd@’ld zo&/o/)

5 (o ,cabnlhj level 4 &uanh&ahug@ Mc\mged
o Thocess o conteolled tiing, Séahshcac &
Umhéa%v@ %ﬁdf)f"?‘/(%

g footess Pa'éﬁo“@fﬂan@ Qf‘OA zUa hj 15 uréeﬂfmg(
1N "fco\JquomJL s and. mMekcs -
N &’Janb{abve Dojeckives fos - PrOES Qucﬂrkg Ond
pesifosranee pmo eStablithed: geon sl

® G y’/OJD?Hy level 5 : OP{'\mIZJQﬁ

& 10 FOLLs On CDﬂ‘hﬂua[g rmp‘zrDVl(g PZYDQQ_(S
P@%mnce
® fesitgmnonte s inpaoved i bOHn uggy-

nesemental and innovadio,
% B Pha).u s on fhdg' g W PQK%MMQ

ol aeae the msganuo\hon (D equ@_
tha t Cbmrnoﬂ cameq o fesuex cme

deﬂ-\—\?m@l aﬂa %X‘QO‘

l

19\l /9 Process Models

Tnksdduckion - R |
In Sie e glw pwce&s medel i 'th -'};,;,.,
o lulldrg sl development cook ity d.rh
phoses to impoove desgn , peoduct PG/0gen
% pwject managerent 't & albo koown qg _
8\00 dlevelopment ife G‘JO(E' o Taddnaein 1
| Tk @kabl,_d,& tHe ﬁouodabbr) Fos @ c@mp e

P dw poess By idenklying 4 small . o &

achvitiey . T mcbwle.a o et of umbell Qf& it
fe\OLE Qe QPP{(QO.% ULCTSD.S‘.S {ﬂ\e (’,nEﬂfE’ S(LO Y
foch fsametoovk ach\n\-& T pop‘i[aﬁed Ly a

B, 0B ackors. A gnesic proess ﬁmmm
¥ SC entompaues’ %ve Od‘l\ﬂ{j& |

WY Communicody 0"

(i) Pbﬂmn&
i) MOdQ((ﬂg

tiv) CQrulj(uc,h‘on
tv) Reployment b
- Psocess. modeling 1< te gmphtcai
o Blusiness pmegs (o) work Hows.,
s the tek & achvibes @ wsq:«aéqd
ot pooduce o s produc, Wh
:COr"MOV\ o all Slw IR Lses .

, ,,00
P 4 A .

W
@&a | Model - (htFM)

o 1P, Sorvekioes @lled e csic eyt
U}% O &g&l\ﬁm;\bc &eguer\haf QFWOQCB +,o
" Jewelopment Hak bgrrg i cuskonnes,

umLaEU‘ % wu‘me“k 3 Pmﬂm ﬁmﬁ})

QU&:*

T i SN

Qm h’\UﬂlCﬂ‘hOf) h
?*N) inifafidn | v o MRS of MO

“ The coodeda) Model, 4

'

o Wakerfall Moddl (IPM) - 3
Tt (o opten wsed fos (ooge sale mJee& b,

| timelines w@\ezse fhege K© o [itde ¥Dom |
it owsO & progeck ctakeho(dess . need. ﬁ) ‘.;L;j‘ }
hgh level of obdene N e Oubcoma. - -~
ool bQ_gmb COIH) OLU{DmQﬂ SFEQ%QQhC)n 5%'
ey % OISR hooigh Aagning:
moddmg conskuchon & olapotgmgr,g &1?;?, ﬂﬂ?_ |
(0 ONGoINY Lppost oy He computed J'/uu; ;
’Phagx& of classical cootexfoll model - 3
T model way Rsst Mboducett by 'Winskon W
in 1930- oL W o lfneasn 21 &E%aeﬂjﬂal O(PPM ?
o slwo dlevelopment - This Conaisk of SveR) pha;
thot Mk ke Ccempleted . in a Specihc osden.
LAokesfall opproads o Fvst “SDLe” mgde! to ke
twed oidaly @ $-¢ bo Qe cucceyy oF b
mJQ'UU = : £ j
07Y) Hne Fxguxe the ou{ipué ok one ;m |
Lo the inpub op e nexd phase.d R

5 wjﬂ 80{10‘2“5’03 & 'ﬁﬂafsé_s "Aﬂ

aﬂe Qapbﬂfed M thes Phate % do (

o mww’@meﬂ{’ Seeditation (&r%& so w
e uivemert &pwﬁ\mhom) e A

1 eI
= A

;"{MMP' 2’ : (-‘ !
o\l lq\('r‘f) ﬂ%\@!’) - he 896 € rvpnks &Petfﬁ'ca{fw

,JQE (;[qabe cote “grudied € Hre Systern
g 15 1oerooed - This yctenn, design. helgg
'u'_(;[)(‘ri‘ﬂtjif)\g)n'n(/ux'b?‘e & £td8l‘em Seguieeimenty
| Ju-‘\fw: 10 ()\E’F\‘q,'r)g 'H'\P oveno | Systern

"\I\!“ \{{(Ttllho i

‘\'h("\l Y1

o wpomenkobon 1= Wit iopuls from e e

Jaign , the Sysem, B 4% dovelypd in sl
Cugpoms called watks | wahich este ntegaated
te NEXE pbogge. Cach ‘um'e ¢ deyeloped
¢ tested - for” 8 Aunckionadity | wshich, s leged
| 1o as untk 'Mlﬂ"?g”- |

Vieiting, - Onee the. destiag iplase: comed; Hhe iy
'S {Cg{(’é oL O Ujlf\DlQ to ersuxe H—;a(-!g YL m@Q‘d’
fre wequisements B ke 3 Kee Bom dofecls.

5) pefloyments- Dne iboe: Sl “hay Eeers Hetbed B

Cappoved ik i deplaed o' the! pupdiuebion

enuNeNb: ot Lo G ian SRR

& Mointenandeits The il phase which lﬁ’m@l. |
fdng ony stues that aaite olfer the)’
hos keen deploged & @Muaing fhal it cobinee,
In. (ool tpe sguisements . ouen: e bime.

’
AL _ Sk R) S JRVREANE 5 '

) - .
~ - + ! LR

1
' . - Y ' a |
- » v, "N 3 . » »
| " E IR \ QF UAAUALS 3K \
[\ A N L) b \
- l
‘ |

Nvonkages - e INFIM - '*;
60&5 s uﬂdp.ﬁc{cmi $oi (8 Versg &lfﬂplf an
ts undesstond: |
Tdividual proceseag ; fhoses m s moé
mePSSPO one ak o tme. e
Properly lebved - €ach sloge in this rodel &
Jofined - 3
cleao mileskone
bindorstood miilestones: §
portly” docimented : foocess , acf'xony) ’6&(,([
ool clocumented, faob]
Remfosces good habats - “Thic modqt wnﬁmu 3
abily: ke dehine- "befoxe deslgn or\d du
Eefose code - ‘ |
Hozskmg & T
Tt coovls well fog saollex Pamecj« L |
(Ohone wRQuisements - oste coell .w
Mis walksfoll rodet hos gevenal benef ¥
i, Jelps poofects keep o well defined p
project -under budgets, o o e N
Risadwontoger b HEM:2 - alack S8
 Beowe o} sove m0josdowbakg-
model - e cov't we & i vl PJQ' 38
use Othesr Softaome, Aorelopment 1*

isgRERE: ok S

TL oA V@«g'dw ind R

ji g

r).'(‘lm? t’o‘“\dm O E)a&d on *H",Q- ' QJO.&&qu [\ ¢
,k\\(\-k’“‘\‘ott MMEtO ‘

N fecdback maka
evn 15 €ves committed by deye

mechanitrm fo¥ €86DF Weechon,

of [

e o accommedate chon

ushoviey - seguiments Lo o

Bt Rguesty b
O i - (’ba”ﬂfﬁ.ﬁ mimairmg)
| it b accommulale o e gy

the teguisemenfs M&meh'uq chage i ook
NG ?'\”@”(QPP“”Q o phages : Tﬂ this mo&af n-ea.zl
thae can Stast only afkes: fthe comlebipn o -
petiows Phose - Bub 0 vl pgject g Can't ,be'
mointained - o (csease fficiency - & seohige gt
phages oy ovestlapa

Limiﬁ’d ffl?kfbl“ll‘{y + (ohich. Nk ube[l;~&uzféer>” :
fov - PaDjedE " Loits changing o¢ untextain v€Quisermenk.
P o praser hoy ecen completed it s dePieut
© make changes 0¥ 90% batk by & pRVioU « - |
Phouse i NGRS - o
Limite) stoke - holdes m\[o\\}gmg@ki e stokehpldest
e typieally iovolved * (s the eanly phases ¢
the projeck ﬁ@g,uizsemenbl-,'ﬂg and analiis

Phoes (implementation , kNG O’E’Ph)ld 0

[)Q‘Bﬁ)g develapment gycle: Wis Fodel A8 ey
{0 \engthy dovelopment cycle ac each WG
e conpleted before Moving on fo the ,,ex
fﬁm con' el 1 ddaw g, (()Cﬁea/&ed CDSB

vequisenent changes 0% TNeLy (ssues Qe ,
Nob uitoble fos complex prgjeck: Thpc model o |

ke it ARttt & manage mutbiple deps ,'__ |
ond iolesi - veloted Componenh N

AﬁprQE\W Ué WEM - e

Lomge seale- Slw o\e\fec)pmen{f PB'QJQCR (—h\l |

model eraUEe thed, thry pogject eemyle 2
On hime “and within | budlget: + =7 - v

Psojeds with toell-Jebned Resuisements.', 4] e
seopontp) natuse G toe rrodel zfeg,urm
- cAeast urdmﬁano?r"?g ok the paojecty obﬁdm%
% 'ZSDJQ QE PERTA S&Q@)[éi"é@gifé@meng TRg i h
el ~suited fos pojeck with shable . sequives)
ap the linkos rotuse of the mode] ,Q;'f.f
allogo’ fos - thonges to be nde onee
Jon beer omplebd.

U

. " .
: :) 14 » e ! - £) - - - (PR
' f 31y Al ANk
\ ' ot © e \\ ' }Hf

A3 l *_' Y) 2 » LX o 2 . . .
B 0. Xap N O "Ik RIS n

i |
9}3\\\\7‘3

'@ Qgpigo& MOd'eL hage il okl

71 Comes Unden EHesoR® PIDRSs nviodel L ‘
. evaluotionagy model - Tk hay & s’ca_gg > &
.m endless loop , & Neven ends , ik Qqn«%&(ﬂs |
sepeakokive okivibies ia this, whene 7isles. ane
poedictoble then we tan wie spisod Model. @&
doss ok QO ond ends .ot Ba - D e the
ruskomen | exoduodkion will [be done . T the cuttpmey

s Nok sokished Haen One_ mpse (terodron ol 30 up.
Like Wak again this, ¢pisa) with o loop: tonkinye:
uakl & Unless the Customesn 1S Sakigheq ,

Tn Fsst ienafionait wnkcing e eove produet
0nd N aext Ttenodion Tk CDﬂMch--tHﬁa '&U-bé‘e'guer}-é
phanes and .ok (@t Mo pevduct Lol Joe Lompleled
(he Frsck pha,_se is. one -¥Dund :‘":e.jgs"o’,"“i ‘

The sadius & the episol rr}czf@d&ﬂ', cmé"dhr'd
ntxeoues as the 'B0dius keeps: o (nesedding |
Cthe cost alsp inCseqdes - Gzengﬁv'Og worll r‘hC'is@a“dé
oo the gadiug & the spieal ' keeps' on incsensrng.

Angle will indrate the' poogmess . B3y example.
the ongle #s 1R0°_ halt of the deuk i dore - e
L Ongle. cuill- vepuesent the Po0gpes Of ' the textk |
Spisod (8 looped oWl ckomes: s cobeded,
s ia ‘Su\"&a‘b‘)e J .f‘oz &Imgeﬁ-‘m\}ﬁﬁ‘:ﬁ AN, d,(ag' j
oo 3o HQY[})\Q‘,'-‘GBMP-}Q‘\('g;‘if {akeda.[fmc. ‘

Refire opyeckive ;
Regutsements Gotheving 2 0"0'9“9

Oddontihy & vesblve wisky | i

Tn this \donh@ ol ’U»o U’S’ﬁ' ard lzy GD 1_)
those wsisks. | e '*
Developing nevk wssion of Slw: A

l\\bﬂw\f)g but mlewar-lmg with qu Cq,{,t-pmem. Q £
{0“*"\9 Weo feedboek fsom therm it 4osne o 2
thangel then Hipgo Q)’l()/\%e& wu() be tf\oplemeﬂ od

~Review & plon fov next phage y
Next phage ig nothing Bk the &econd "Wj
ol those - detesions gofll Le "YIOdG tn s »\i
- D A module s tonvplebd H‘\Qﬂ d@j,w,, ‘_'
+o the . cwttomes aind (L con’ k6 wdecued '
ustomesc When that module (< ckoble 4n

we 4ok € to the. Devt module | oo tast 1{:

0N\ e pesform: the . integsadion befweem
2"’" module & 45 modufe « Then' odses~ ar &
Aenything e a0 weleoe it mwm

,‘mw‘&l o abko - (;Otll&d ay R:Ckve ’Woofd a
OULAO Wlteg InCstmentat modei
Admnkagez Hhod |
. Reguieernent: d'nf@es ooe a\(moed od,a'({)\
Sogdeds, ot 4
s~ SR V2 Tl wlled an Qm\rmn@(l .! o)
@Q&h ngy’ 8 ﬂme by QVeny Oyd@
| &b kize ner& q/ole.

zfx'\s'l
IU 3

8

only e @n

Pisad \cantaei "
b : :

g

g

styack Nede® gk 4

ek Nede™ st} -Null;
- Nsde™ ,yedde Nede ™ 4 doh),lf
Shyuct Node * nevoNede - (srvud Nedet)malle:
ﬂa (Lneworasde) 3 Cﬂzeé(i};;_:
F‘ﬂv-"d(n A QL@ au_.c_oi}% aled.\ o
_ e} tr %m-\

Merorede —>dals = dodo
ALK Nede— Bwk = NuULL’,

weohbede

> NHede * wENMGde :(-,gcdpﬁd?(dﬂ:’o);

—— _— - —-———___\1
chre ¥

vud- Nede™ et =stond -

OWSde (cuove s - 15uH)Cw"h"ﬁfémw
mu":}ubﬁ & qw‘\)ecﬁ‘p} ‘

e =
-
A -
v r
'
|
y i
f
I
1 A J
1 |
- l '.- - -~
n~No
' 3 5 L

AN EeTT

AGILE MODEL
Topics covered
1 About Agile Model
2. Traditional vs Agile model working with example
3. When to use the Agile model
4. Agile principles.
5. Advantages of Agile Model
6. Disadvantages of Agile Model.

About A gile Model

— Mostly used model in today’s digital era.

— Agile means "The ability to respond to changes from requirements technology and
people”.
— It is an incremental and iterative process of software development.
2. working with example:

— Divides requirements into multiple iterations and provides specific functionality for the
release.

—Delivers multiple software requirements
—Each iteration lasts for two to three weeks.
—Direct Collaboration with customers.

— Rapid project development.

Traditional vs Agile Model working with Example

For example:
— Instagram social Application:

Requirements are.

1. Follow-unfollow option

2. Edit profile

3. search

4. Messaging

5. Post photos

6. upload story

7. To make reels.

8. Go Live

— Agile model divides the complete requirements into the multiple iterations.

— And they develop the product as per the priority of the requirements

— In the below paragraphs, the time required for development of the above example is taken
both for Waterfall model and Agile model.

Suppose in Waterfall Model, it takes two months for requirements gathering and analysis
phase. After that it take 1/1/2 months for designing pupose and after that it takes 4 months
approximately for coding purpose and 1 1/2 month for testing pupose and at the end, if any
changes are required by the customer, let us assume the time to be for one month. We require

8 to 9 months for development purpose only.
and

Now in Agile Modelin first iteration they take 3 to 4 weeks for development. Afterdeveloping
first iteration, they move to second iteration for 3 to 4 week and again move to next 3 to 4
weeks. For development purpose they require only 3 months. This is the reason why Agile
model is in use in each and every software Development now a days. Agile model requires
minimum time for development with greater accuracy and greater quality of the product.

WHEN TO USE THE AGILE MODEL

1. When project’s size is large

2. When frequent changes are required. A pro

3. When highly qualified and experienced team is available

4, When a customer is ready to have a meeting with a software team all the time after each
and every iteration.

5. Projects with flexible timelines and budget.

AGILE PRINCIPLES (12 PRINCIPLES)

1. Highest priority is to satisfy the customers to early and continue delivery of software

2. Being flexible about changing requirements at any point of development.

3. Working on frequent and short deliveries like couple of weeks or months with preference

4. Transparency between business people and developers and requires them to work together.

5. By providing a better productive environment and providing them with all the support,
motivation. It leads to better productivity.

6. Face to face communication as the most effective way to communicate between customer
and development team.

7. Continuous attention towards effective designing and Technical Excellence through
following optimal code standard.

8. It promotes sustainable development because of the work of developers, users and
sponsors as all of them work together.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity is the art of maximum result and less hard work by removing unnecessary
tasks and prioritizing activities.

11. The best architectures, requirements and designs emerge from self-organizing and

experience teams.
12. For developing effective software, regular analysis and work on improving the overall
delivery or the development process.

Advantages:

1. Supports customer involvement and customer satisfaction.

2. Strong Communication of the software team with the customer.
3. Little planning required.

4. Efficient design and fulfils the business requirement.

5. Anytime changes are acceptable.

6. Provides a very realistic approach to software development,

7. Updated versions of functioning software are released every week.

8. It reduces total development time

Disadvantages:
1. Due to lack of proper documentation, once the project completes and the developers are
allotted to another project, maintenance of the finished project can become difficult.

2. Depends heavily on customer interaction, so if the customer is not clear, team can be
driven in the wrong direction.

UNIT - 11
SOFTWARE REQUIREMENTS & REQUIREMENTS ENGINEERING PROCESS

Part I
Software Requirements:

Functional and non-functional requirements
user requirements

system requirements

interface specification

the sof tware requirements document

oA W e

Part II
Requirementsengineering process:

Feasibility studies
Requirementselicitation and analysis
Requirements validation
Requirements management

Hwnp =

Part |

Part I

Software Requirements:

o s wN e

Functional and non-functional requirements
user requirements

system requirements

interface specification

the sof tware requirements document

1. Functional and non-functional requirements

Functional and Non-functional Requirements:

Software system requirements are often classified as functional
requirements ornonfunctional requirements:

1. Functional requirements: These are statements of services the system
should provide, how the system should react to particular inputs, and how
the system should behave in particular situations.

In some cases, the functional requirements may also explicitly
state what the system should not do.

2. Non-functional requirements: These are constraints on the services
or functions offered by the system.

They include timing constraints, constraints on the development
process, and constraints imposed by standards.

Non-functional requirements often apply to the system as a
whole, ratherthan individual system features or services.

Functional requirements:

The functional requirements for a system describe what the
system should do. These requirements depend on

» the type of software being developed,

» the expected users of the software, and

» The general approach taken by the organization
when writing requirements.

When expressed as user requirements, functional requirements
are usually described in an abstract way that can be understood by
system users. However, more specific functional system requirements
describe the system functions, its inputs and outputs, exceptions, etc.,
in detail

Functional system requirements vary from general requirements
coveringwhatthe system should do to very specific requirements reflecting
local ways of working or an organization’s existing systems.

Example:

Functionalrequirements for the MHC-PMS system, used to maintain
information about patients receiving treatment for mental health
problems:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.

3. Each staff member using the system shall be uniquely identified by his or her
eight-digit employee number.

In principle, the functional requirements specification of a system
should be both complete and consistent.

» Completeness means that all services required by the user
should be defined.
» Consistency means that requirements should not have

contradictory definitions.

In practice, for large, complex systems, it is practically impossible
to achieve requirements consistency and completeness.

One reason for this is that it is easy to make mistakes and
omissions when writing specifications for complex systems.

Another reason is that there are many stakeholders in a large
system. A stakeholder is a person or role that is affected by the system
in some way. Stakeholders have different and often inconsistent needs.
These inconsistencies may not be obvious when the requirements are
first specified, so inconsistent requirements are included in the
specification.

The problems may only emerge after deeper analysis or after the
system has been delivered to the customer.

Non-functional requirements:

Non-functional requirements are the requirements that are not
directly concerned with the specific services delivered by the system to
the users.

They may relate to emerge system properties such as reliability,
response time, and store occupancy. Alternatively, they may define
constraints on the system implementation such as the capabilities of1/0
devices or the data representations used in interfaces with other
systems.

Non-functional requirements are often more critical than
individual functional requirements. However, failing to meet a non-
functional requirement canmean that the whole system is unusable.
For example, if an aircraft system doesnot meet its reliability
requirements, it will not be certified as safe for operation.

Although it is often possible to identify which system components
implement specific functional requirements (e.g., there may be formatting
components that implement reporting requirements), it is often more
difficult to relate components to non-functional requirements. The
implementation of these requirements may be diffused throughout the
system. There are two reasons for this:

1. Non-functional requirements may affect the overall architecture of a
system rather than the individual components. For example, to ensure that
performance requirements are met, you may have to organize the
system to minimize communications between components.

2. A single non-functional requirement, such as a security requirement,
may generate a number of related functional requirements that define new
system services that are required. In addition, it may also generate
requirements that restrict existing requirements.

Classification of non-functional requirements:

Non-functional requirements arise through user needs, because of
budget constraints, organizational policies, the need for interoperability
with other softwareor hardware systems, or external factors such as safety
regulations or privacy legislation.

Following figure shows the classification of non-functional
requirements.

Non-Functional
Requirements
Produa Organizational Extemal
Requirements Regquirements Requirements
Efficiency Dependability Sequrity Regulatory Ethical
Requirements Requirements Requirements Requirements Requirements
Usability Environmental Operational Development | Legslative
Requirements Requrements Requirements Regquirements Requirements
Performance Space Accounting Safety/Secunty
Requrements Requirements | Requirements Requirements

Figure: Types of Non-functional Requirenients

From this diagram we can see that the non-functional requirements may
come fromrequired characteristics of the software (productrequirements),
the organization developing the software (organizational requirements),
or from external sources

1. Product
behavior ofthe software.

requirements: These requirements specify or constrain the

Examples include performance requirements on how fast the
system must execute and how much memory it requires, reliability
requirements that set out the acceptable failure
requirements, and usability requirements.

rate, security

2. Organizational requirements: These requirements are broad system
requirements derived from policies and procedures in the customer’s

and developer’s organization.

Examples include operational process requirements that define
how the system will be used, development process requirements that
specify the programming language, the development environment or
process standards to be used, and environmental requirements that
specify the operating environment of the system.

3. External requirements: This broad heading covers all requirements
that arederived from factors external to the system and its
development process.

These may include regulatoryrequirements that set out what must
be done for the system to be approved foruse by a regulator, such as a
central bank; legislative requirements that must be followed to ensure that
the system operates within the law; and ethical requirements that ensure
that the system will beacceptable to its users and the general public.
Example:

PRODUCT REQUIREMENT
The MHC-PMS shall be available to all dinics during normal working hours (Mon—Fri, 08.30-17.30). Downtime
within normal working hours shall not exceed five seconds in any one day.

ORGANIZATIONAL REQUIREMENT
Users of the MHC-PMS system shall authenticate themselves using their health authority identity card.

EXTERNAL REQUIREMENT
The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.

Whenever possible, we should write non-functional requirements
quantitatively so thatthey canbe objectively tested.Following figure shows
metrics that you can use to specify non-functional system properties.
We can measure these characteristics when the system is being tested to
check whether or not thesystem has met its nonfunctional requirements.

Property Measure

Speed Processed ransactons/second
User/event response time
Scaeen refresh time

Size Mbytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean sme to failure
Probability of unavailability
Rate of failure ocaurrence
Availability

Robustness Time to restart aftor failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Figure: Metrics for specifying non-functional requirements

Non-functional requirements such as reliability, safety, and
confidentiality requirements are particularly important for critical
systems.

Functional Requirements

Non-Functional Requirements

1. A functional requirement defines a
system or its component.

A non-functional requirement defines
the quality attribute of a software
system.

2. It specifies “What should the
software
system do?”

It places constraints on “How should
the software system fulfil the functional
requirements?”

3. Functional requirement is specified
by User.

Non-functional requirement is specified
by technical peoples e.g. Architect,
Technical leaders and software
developers.

It is mandatory.

It is not mandatory.

It is captured in use case.

It is captured as a quality attribute.

Defined at a component level.

Applied to a system as a whole.

N |9

Helps you verify the functionality of
the software.

Helps you to verify the performance of
the software.

8. Functional Testing like System,
Integration, End to End, API testing,
etc are done.

Non-Functional Testing like
Performance, Stress, Usability, Security
testing, etc are done.

9. Usually easy to define.

Usually more difficult to define.

Example

1) Authentication of user whenever
he/she logs into the system.
2) System shutdown in case of a cyber
attack.
3) A Verification email is sent to user
whenever he/she registers for the first
time on some software system.

Example

1) Emails should be sent with a
latency of no greater than 12 hours
from such an activity.

2) The processing of each request
should be done within 10 seconds

3) The site should load in 3 seconds

when the number of simultaneous
users are > 10000

User requirements:

These requirements describe what the end-user wants from the software system. User
requirements are usually expressed in natural language and are typically gathered through
interviews, surveys, or user feedback.

User requirements are written for customers

They are usually expresses in natural language.

Because of this, they are easy to understand

They describe services and features provided by system

This may include diagrams and tables which are understood by system users
The system users do not need technical knowledge to understand these

User requirements are for client managers, system end users, client engineers,
contractor managers and system architects

8. They are gathered through various means such as interviews, surveys, or user

feedback.
Example:

NookrwdE

User Requirement Definition

1. The MHC-PMS shall generate monthly management reports showing
the cost of drugs prescribed by each dinic during that month.

System Requirements Specification

1.1 On the last working day of each month, a summary of the drugs
presaibed, their cost, and the prescribing clinics shall be generated.

1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.

1.3 A report shall be aeated for each dinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
presaibed, and the total cost of the prescibed drugs.

1.4 i drugs are available in different dose units (e.g., 10 mg, 20 mg)
separate reports shall be created for each dose unit.

1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

This example from a mental health care patient management
system (MHC- PMS) shows how a user requirement may be expanded
into several system requirements.

Different levels of requirements are useful because they
communicate information about the system to different types of reader.

Client Managers
System End-Users
Client Engineers
Contractor Managers
System Architects

User
Requirements

System End-Users
System Chient Engineers
Requirements ‘ System Architects
» Software Developers

System requirements:

These requirements specify the technical characteristics of the software system, such as its
architecture, hardware requirements, software components, and interfaces. System
requirements are typically expressed in technical terms and are often used as a basis for

system design.
Salient features

1. Written for implementation team

2. They are written in technical language / technical terms

3. System Requirements describe the detailed description of services, features and
complete operations of system

4. System Requirements may include system models and system designs

5. System Requirements can be understood by implementation team with technical
knowledge.

6. System Requirements are for architects, software Developers, client engineers, system
users and overall implementation team

7. They form basis for a system design

Interface Specification:

What is Interface?
= A point where two systems, subjects,
organizations, etc. meet and interact.

= A device or program enabling a user to
communicate with a computenr.

= A inter face is a intersection between system
and environment.

= Interface =—=system /environment

What is specification?
= A Specification is a agreement Between the

produce of the services Consumer of that services

What is Interface specification?

All software svystems must operate with
existing svstems that have already been
implemented and installed in an
environment.

If the new system and existing syvstems must
work together, the interfaces of existing
systems have to be precisely specified.

These specifications should be defined early
in the process and included in the
reguirements document.

Types of Interface Specification:
= Procedural interfaces.
= Data structures.
= Representations of data.

Procedural interfaces where existing programs or
sub-systems offer a range of services that are
accessed by calling interface procedures. In simple
words it Is used for calling the existing programs by
the new programs These interfaces are sometimes
called Application Programming Interfaces (APLs).

* Data structures that are passed from one sub-
system to another. Graphical data models are the
best notations for this type of description

= Representations of data (such as the ordering of bits)
that have been established for an existing sub-system.
These interfaces are most common in embedded, real-
time system. Some programming languages such as
Ada (although not Java) support this level of
Specification.

= Sub system requesting service from other
sub systems.

General

Requirements
Supplier

l tmp ' Specific Ul
[u Speciﬂcaﬂon] [Ul Prototyping]

l Feedback l

For 5 marks question

Interface Specification:

Most systems must operate with other systems and the operating interfaces mustbe
specified as part of the requirements.

Three types of interface may have to be defined

» Procedural interfaces where existing programs or sub-systems offer
a range of services that are accessed by calling interface procedures.
These interfaces are sometimes called Application Programming
Interfaces (APIs)

» Data structures that are exchanged that are passed from one sub-
systemto another. Graphical data models are the best notations for
this type of description

» Data representations that have been established for an existing sub-

system Formal notations are an effective technique for interface
specification.

000

Software Requirements Document:

The software requirements document (sometimes called the
software requirements specification or SRS) is an official statement of what
the system developers should implement.

It should include both the user requirements for a system and a
detailed specification of the system requirements.

Sometimes, the user and system requirements are integrated into
a single description. In other cases, the user requirements are defined in
an introduction to the system requirements specification. If there are a
large number of requirements, the detailed system requirements may
be presented in a separate document.

Requirements documents are essential when an outside contractor
is developing the software system. The requirements document has a
diverse set of users, ranging from the senior management of the
organization that is paying for the systemto the engineersresponsible for
developing the software. Following figure shows possible users of the
document and how they use it.

Spedcfy the requirements and
Syst : read them to checdck that they
Cu:tom] meet their needs. Customers
specify changes to the
requirements.
Use the requirements
document to plan a bid for
Managers the system and to plan the
system development process.
"S’ st = = Use the requirements to
Enyinee'e' .rs understand what system is
= to be developed.
Svst Use the requirements to
Test anin develop validaton tests for
i the system.
s e Use the requirements to
A in,tsetnance understand the system and
Engineers the relationships between
iIts parts.

Figure: Users of a requirements document

The image in the next page shows one possible organization for a
requirements document that is based on an IEEE standard for
requirements documents (IEEE, 1998). This standard is a generic
standard that can be adapted to specific uses.

Chapter

Preface

Introduction

Glossary

User requirements
definition

System architecture

System requirements

spedfication

System models

System evolution

Appendices

Index

Description

This should define the expected readership of the document and describe its
version history, including a rationale for the creation of a new version and a
summary of the changes made in each version.

This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It should
also desaibe how the system fits into the overall business or strategic
objectives of the organization commissioning the software.

This should define the technical terms used in the document. You should not
make assumptions about the experience or expertise of the reader.

Here, you describe the services provided for the user. The non-functional
system requirements should also be described in this section. This
description may use natural language, diagrams, or other notations that are
understandable to customers. Product and process standards that must be
followed should be specified.

This chapter should present a high-level overview of the anticpated system
architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

This should describe the functional and non-functional requirements in more
detail. If necessary, further detail may also be added to the non-functional
requirements. Interfaces to other systems may be defined.

This might indude graphical system models showing the relationships between
the system components, the system, and ifs environment. Examples of possible
models are object models, data-flow models, or semartic data models.

This should describe the fundamental assumptions on which the system is
based, and any anticipated changes due to hardware evolution, thanging
user needs, and 0 on. This section is useful for system designers as it may
help them avoid design decisions that would constrain likely future changes
to the system.

These should provide detailed, spedfic information that is related to the
application being developed; for example, hardware and database desariptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used
by the system and the relationships between data.

Several indexes to the document may be induded. As well as a normal
alphabetic index, there may be an index of diagrams, an index of functions,
and so on.

In this case, they have extended the standard to include information
about predicted system evolution. This information helps the maintainers
of the systemand allows designers to include support for future system
features.

Requirements specification:

Requirements specification is the process of writing down the user and
system requirements in a requirements document.

Ideally, the user and system requirements should be clear,
unambiguous, easy to understand, complete, and consistent. In practice,
this is difficult to achieve as stakeholders interpret the requirements in
different ways and there are often inherent conflicts and inconsistencies
in the requirements.

The user requirements for a system should describe the functional
and nonfunctional requirements so that they are understandable by
system users who don’t have detailed technical knowledge. Ideally, they
should specify only the external behavior of the system. The
requirements document should not include details of the system
architecture or design. Consequently, if you are writing user
requirements, you should not use software jargon, structured notations,
or formal notations. You should write user requirements in natural
language, with simple tables, forms, and intuitive diagrams.

System requirements are expanded versions of the wuser
requirements that are used by software engineers as the starting point for
the system design. They add detail and explain how the user requirements
should be provided by the system. They may be used as part of the
contract for the implementation of the system and should therefore be a
complete and detailed specification of the whole system. Ideally, the
system requirements should simply describe the external behavior of
the system and its operational constraints. They should not be concerned
with howthe system should be designed or implemented.

User requirements are almost always written in natural language
supplemented by appropriate diagrams and tables in the requirements
document. System requirements may also be written in natural language
but other notations based on forms, graphical system models, or
mathematical system models can also be used. Following figure
summarizes the possible notations that could be used for writing system
requirements.

Notation Description

Natural language sentences The requirements are written using numbered sentences in natural
language. Each sentence should express one requirement.

Stuctured natural language The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the
requirement.

Design description languages This approach uses a language like a programming language, but with
more abstract features to specfy the requirements by defining an
operational model of the system. This approach is now rarely used
although it can be useful for interface specifications.

Graphical notations Graphical models, supptemented by text annotations, are used to define
the functional requirements for the system; UML use @ase and sequence
diagrams are commonly used.

Mathematical spedfications These notations are based on mathematical concepts such as finite-state

machnes or sets. Athough these unambiguous speaiications (an reduce
the ambiguity in a requirements document, most customers don't
understand 2 formal specification. They Gannot check that it represents
what they want and are reluctant to accept it as a system contract.

Ways of writing system requirements specification

000

Part I

Part IL

Requirementsengineering process:

Hwnp =

Feasibility studies

Requirementselicitation and analysis
Requirements validation
Requirements management

Requirements Engineering Process:

The requirements engineering process aims to produce an agreed
requirements document that specifies a system satisfying stakeholder
requirements.

Requirements are usually presented attwo levels of detail. End-users
and customers need a high-level statementofthe requirements; system
developers needa more detailed system specification.

There are four main activities in the requirements engineering process:

1. Feasibility study (These focus on assessing if the system is
useful to thebusiness),

2. Requirements elicitation and analysis (discovering requirements),

3. Requirements specification (Converting these requirements
nto some standard form), and

4. Requirements validation (checking that the requirements actually
define thesystem that the customer wants).

Feasibility
Study

Requirements
Eliatation and\-‘

Analysis j

| Requirements
1 Specification
Feasibility Requirements
Report ! g Validation
System
Models '
User and System
Requirements
|

»| Requirements
o Document

Figure: The requirements engineering process

Feasibility study:

An estimate is made of whether the identified user needs may be
satisfied using current software and hardware technologies.

The study considers whether the proposed system will be cost-
effective from a business point of view and if it can be developed within
existing budgetary constraints.

A feasibility study should be relatively cheap and quick.

The result should inform the decision of whether or notto go ahead
with a more detailed analysis.

» A feasibility study is a short, focused study that should take place early
in the RE process.
» It should answer three key questions:

a) does the system contribute to the overall objectives of the

organization?

b) can the system be implemented within schedule and budget

using currenttechnology? And

c) can the system be integrated with other systems that are used?

If the answer to any of these questions is no, you should

probably not goahead with the project.

Requirements elicitation and analysis:

After aninitial feasibility study, the next stage of the requirements
engineering process is requirements elicitation and analysis.

In this activity, software engineers work with customers and
system end-users to find out about the application domain, what
services the system should provide, the required performance of the
system, hardware constraints, and so on.

Requirements elicitation and analysis may involve a variety of
different kinds of people in an organization.

A system stakeholder is anyone who should have some direct or
indirect influence on the system requirements. Stakeholders include end
users who will interact with the system and anyone else in an
organization who will be affected byit. Other system stakeholders might
be engineers who are developing or maintaining other related systems,
business managers, domain experts, and trade union representatives.

A process model of the elicitation and analysis process is shown in
Figure below.

1. Requirements
Discovery

2. Requirements
Classification and
Organization

4. Requirements
Specification

3. Requirements
Prioritization and
Negotiation

Figure: The requirements elicitation and analysis process

Each organization will have its own version or instantiation of this

general model depending on local factors such as the expertise of the staff,
the type of system being developed, the standards used, etc.

The process activities are:

1.

Requirements discovery:

This is the process of interacting with stakeholders of the system
to discover their requirements. Domain requirements from
stakeholders and documentation are also discovered during this
activity.

. Requirements classification and organization:

This activity takes the unstructured collection of requirements,
groups related requirements, and organizes them into coherent clusters.
The most common way of grouping requirements is to use a model of
the system architecture to identify sub-systems and to associate
requirements with each sub-system. In practice, requirements
engineering and architectural design cannot be completely separate
activities.

. Requirements prioritization and negotiation:

Inevitably, when multiple stakeholders are involved,
requirements will conflict. This activity is concerned with prioritizing
requirements and finding andresolving requirements conflicts through
negotiation. Usually, stakeholders have to meet to resolve differences
and agree on compromise requirements.

. Requirements specification:

The requirements are documented and input into the next round of
the spiral. Formal or informal requirements documents may be produced.

The above figure shows that requirements elicitation and analysis is an
iterative process with continual feedback from each activity to other

activities.

The process cycle starts with requirements discovery and ends with
the requirements documentation. The analyst’'s understanding of the
requirements improves with each round of the cycle. The cycle ends when
the requirements document is complete.

Eliciting and understanding requirements from system stakeholders is
a difficult process for several reasons:

1. Stakeholders often don’t know what they want from a computer system
except in the most general terms; they may find it difficult to articulate
what theywant the system to do; they may make unrealistic demands
because they don’t know what is and isn’t feasible.

2. Stakeholders in a system naturally express requirements in their own
terms and with implicit knowledge of their own work. Requirements
engineers, without experience in the customer’s domain, may not
understand these requirements.

3. Different stakeholders have different requirements and they may express
these in different ways. Requirements engineers have to discover all
potential sources of requirements and discover commonalities and conflict.

4. Political factors may influence the requirements of a system. Managers
may demand specific system requirements because these will allow them
to increasetheir influence in the organization.

5. The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change. New requirements may emerge from
new stakeholders who were not originally consulted.

Requirements specification:

Requirements specification is the activity of translating the
information gathered during the analysis activity into a document that
defines a set of requirements. Two types of requirements may be included
in this document. User requirements are abstract statements of the system
requirements for the customer and end-user of the system; system
requirements are a more detailed description ofthe functionality to be
provided.

Requirements validation:

Requirements validation is the process of checking that requirements
actually define the system that the customer really wants.

It overlaps with analysis as it is concerned with finding problems
with the requirements.

Requirements validation is important because errors in a

requirements document can lead to extensive rework costs when these
problems are discoveredduring development or after the system is in

service.

The cost of fixing a requirements problem by making a system

change is usually much greater than repairing design or coding errors.

During the requirements validation process, different types of

checks should be carried out on the requirements in the requirements

document. These checks include:

1.

Validity checks:

A user may think that a system is needed to perform certain
functions. However, further thought and analysis may identify
additional or different functions that are required. Systems have
diverse stakeholders with different needs and any set of
requirements is inevitably a compromise across the stakeholder
community.

. Consistency checks:

Requirements in the document should not conflict. That is,
there should not be contradictory constraints or different descriptions
of the same system function.

3.Completeness checks:

The requirements document should include requirements
that define all functions and the constraints intended by the system
user.

4. Realism checks:

Using knowledge of existing technology, the requirements
should be checked to ensure that they can actually be implemented.
These checks should also take account of the budget and schedule
for the system development.

5. Verifiability:

To reduce the potential for dispute between customer and
contractor, systemrequirements should always be written so thatthey
are verifiable. This means that you should be able to write a set of
tests that can demonstrate thatthe delivered system meets each
specified requirement.

There are a number of requirements validation techniques that can
be usedindividually or in conjunction with one another:

1.Requirements reviews:

The requirements are analyzed systematically by a team of
reviewers who check for errors and inconsistencies.

2.Prototyping:

In this approach to validation, an executable model of the system
in questionis demonstrated to end-users and customers. They can
experiment with this modelto see if it meets their real needs.

3.Test-case generation:

Requirements should be testable. If the tests for the requirements
are devised as part of the validation process, this often reveals
requirements problems. If a testis difficult or impossible to design, this
usually means that the requirements will be difficult to implement and
should be reconsidered. Developing tests from the user requirements
before any code is written is an integral part of extreme programming.

Requirements management:

Once a system has been installed and is regularly used, new
requirements inevitably emerge due to business, organizational, and
technical changes which lead to changes to the requirements for a
software system.

Requirements management is the process of understanding and
controlling changes to system requirements.

You need to establish a formal process for making change
proposals andlinking these to system requirements.

The formal process of requirements management should start as
soon as a draft version of the requirements document is available.

However, you should start planning how to manage changing
requirements during the requirements elicitation process.

Requirements management planning:

Planning is an essential first stage in the requirements management
process. Itestablishes the level of requirements management detail that is
required.

During this requirements management stage, you have to decide on:

1.Requirements identification:

Each requirement must be uniquely identified so that it can be
cross- referenced with other requirements and used in traceability
assessments.

2.A change management process:

This is the set of activities that assess the impact and cost of
changes.

3.Traceability policies:

These policies define the relationships between each requirement
and between the requirements and the system design that should
be recorded. The traceability policy should also define how these
records should be maintained.

4.Tool support:

Requirements managementinvolves the processing of large amounts
of information about the requirements. Tools that may be used range from

specialist requirements management systems to spreadsheets and simple
database systems.

Requirements management needs automated support and the software tools
for thisshould be chosen during the planning phase. You need tool support
for:

1.Requirements storage:

The requirements should be maintained in a secure, managed data
store thatis accessible to everyone involved in the requirements engineering
process.
2.Change management:

The process of change management is simplified if active tool
support isavailable.
3.Traceability management:

Tool support for traceability allows related requirements to be
discovered. Some tools are available which use natural language processing
techniques to help discover possible relationships between requirements.

For small systems, it may not be necessary to use specialized requirements
management tools. It may be supported using the facilities available in word
processors, spreadsheets, and PC databases. However, for larger systems, more
specialized tool support is required.

Requirements change management:

Requirements change management should be applied to all proposed
changes to a system’s requirements after the requirements document has been
approved.

Change management is essential because you need to decide if the benefits
of implementing new requirements are justified by the costs of implementation.

The advantage of using a formal process for change management is that
all change proposals are treated consistently and changes to the
requirements document are made in a controlled way.

|dentified Revised
Problem | Problem Analysis and ChangeAnalysis | | Change | Requirements
Change Specfication [| and Costing || Implementation | ;

Figure: Requirements change management

There are three principal stages to a change management process:

1. Problem analysis and change specification:

» The process starts with an identified requirements problem or,
sometimes, with a specific change proposal.

» During this stage, the problem or the change proposal is analyzed to
check that it is valid. This analysis is fed back to the change requestor
who may respond with a more specific requirements change proposal,
or decide to withdraw the request.

2. Change analysis and costing:

» The effect of the proposed change is assessed using traceability
information and general knowledge of the system requirements.

» The cost of making the change is estimated both in terms of
modifications to the requirements document and, if appropriate, to
the system design andimplementation.

» Once this analysis is completed, a decision is made whether or not to
proceed with the requirements change.

3. Change implementation:

» The requirements document and, where necessary, the system design
and implementation, are modified.

» We should organize the requirements document so that we can make
changes to it without extensive rewriting or reorganization.

» As with programs, changeability in documents is achieved by
minimizing external references and making the document sections
as modular as possible. Thus, individual sections can be changed and
replaced without affecting other parts of the document.

If a new requirement has to be urgently implemented, there is always
a temptation to change the system and then retrospectively modify
the requirements document.

00o0

UNIT III

DESIGN ENGINEERING
Syllabus

Design Engineering: Design process and design quality, design concepts, the design model.
Creating an architectural design: software architecture, data design, architectural styles and
patterns, architectural design, conceptual model of UML, basic structural modeling, class
diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component

diagrams.

3ok
Design Engineering;:

Design:

Design is a meaningful engineering representation of something that is to be
built.

It can be traced to a customer’s requirements and at the same time

assessed for quality against a set of predefined criteria for “good” design.

In the software engineering context, design focuses on four major areas

of concern: data, architecture, interfaces, and components.

Software engineers design computer based systems, but the skills required at

each level of design work are different.

> At the data and architectural level, design focuses on patterns as
they applyto the application to be built.

> At the interface level, human ergonomics (human factors) often
dictate ourdesign approach.

> At the component level, a “programming approach” leads us to

effective data and procedural designs.
Why is it important?

Design allows you to model the system or product that is to be built.
This model can be assessed for quality and improved before code is generated,
tests are conducted, and end users become involved in large numbers.

The goal of designis to produce a model or representation that exhibits firmness, commodity,
and delight. To accomplish this, you must practice diversification and then convergence.

Design Engineering;:

Design engineering encompasses the set of principles, concepts, and practices that lead to the
development of a high-quality system or product.

oDesign principles establish an overriding philosophy that guides you in the design work
you must perform.

oDesign concepts must be understood before the mechanics of design practice are applied.

oDesign practice itself leads to the creation of various representations of the software that
serve as a guide for the construction activity that follows.

Design Within the Context of Software Engineering;:

“The most common miracle of software engineering is the transition from analysis to design
and design to code.”

Once software requirements have been analyzed and modeled, software design is the last
software engineering action within the modeling activity and sets the stage for construction

(code generation and testing).

Each of the elements of the requirements model provides information that is necessary to
create the four design models required for a complete specification of design. The flow of
information during software design is illustrated in figure below.

Component-

Scenerio-based i
elements] Behavioral Level Design
Use cases - text elements
Use-case diograms State diagrams
| | Activity diograms Sequence diograms l
Swimlane diagroms Interface Design

Analysis Model

Architectural Design

Class-based —
elements
Class diograms Data/Class Design
Analysis pockoges
CRC models .
Collaboration diograms Design Model

Figure: Translating the requirements model into the design model

The requirements model, manifested by scenario-based, class-based, flow- oriented, and
behavioral elements, feed the design task. Using design notation and design methods
discussed inlater chapters, design produces a data/class design, an architectural design, an

interface design, and a component design.

\ 2%

The data/class design transforms class models into design class realizations and the
requisite data structures required to implement the software.
Part of class design may occur in conjunction with the design of software architecture.
More detailed class design occurs as each software component is designed.
The architectural design defines the relationship between major structural elements of
the software, the architectural styles and design patterns that can be used to achieve
the requirements defined for the system, and the constraints that affect the way in
which architecture can be implemented.
The interface design describes how the software communicates with systems that
interoperate with it, and with humans who use it.
The component-level design transforms structural elements of the software
architecture into a procedural description of software components. Information
obtained from the class-based models, flow models, and behavioral models serve
as the basis for component design.

000

Design Process and Design Quality:

Software design is an iterative process through which requirements are translated into a
“blueprint” for constructing the software.

Throughout the design process, the quality of the evolving design is assessed with a series
of formal technical reviews or design walkthroughs. McGlaughlin suggests three
characteristics that serve as a guide for the evaluation of a good design:

» The design mustimplement all of the explicit requirements contained in the analysis
model, and it must accommodate all of the implicit requirements desired by the
customer.

> The design must be a readable, understandable guide for those who generate code
and for those who test and subsequently support the software.

» The design should provide a complete picture of the software, addressing the data,
functional, and behavioural domains from an implementation perspective.

Each of these characteristics is actually a goal of the design process.

Quality Guidelines:

In order to evaluate the quality of a design representation, we must establish technical

criteria for good design.
The following are the quality guidelines:

1. A design should exhibit an architecture that
a) has been created using recognizable architectural styles or patterns,
b) is composed of components that exhibit good design, and
¢) can be implemented in an evolutionary fashion, thereby facilitating implementation
and testing.
2. A design should be modular; that is, the software should be logically partitioned into
elements or subsystems.
3. A design should contain distinct representations of data, architecture, interfaces, and
components.
4. A design should lead to data structures that are appropriate for the classes to be
implemented and are drawn from recognizable data patterns.
5. A design should lead to components that exhibit independent functional characteristics.
6. A design should lead to interfaces that reduce the complexity of connections between
components and with the external environment.
7. A design should be derived using a repeatable method that is driven by information
obtained during software requirements analysis.
8. A design should be represented using a notation that effectively communicates its

meaning.

These design guidelines are not achieved by chance. They are achieved through the

application of fundamental design principles, systematic methodology, and

thorough review.

Quality Attributes:
Hewlett-Packard developed a set of software quality attributes that has been given the

acronym FURPS—functionality, usability, reliability, performance, and supportability.

The FURPS quality attributes represent a target for all software design:

>

Functionality is assessed by evaluating the feature set and capabilities of the
program, the generality of the functions that are delivered, and the security of the
overall system.

Usability is assessed by considering human factors, overall aesthetics, consistency,
and documentation.

Reliability is evaluated by measuring the frequency and severity of failure, the
accuracy of output results, the mean-time-to-failure (MTTF), the ability to recover
from failure, and the predictability of the program.

Performance is measured by considering processing speed, response time, resource
consumption, throughput, and efficiency.

Supportability combines the ability to extend the program (extensibility),
adaptability, serviceability - these three attributes represent a more common term,
maintainability and in addition, testability, compatibility, configurability (the ability
to organize and control elements of the software configuration), the ease with which

a system can be installed, and the ease with which problems can be localized.

Not every software quality attribute is weighted equally as the software design is

developed.

> One application may stress functionality with a special emphasis on security.

> Another may demand performance with particular emphasis on processing speed.
> A third might focus on reliability.

Regardless of the weighting, it is important to note that these quality

attributes must be considered as design commences, not after the design is

complete and construction has begun.

Design Concepts:

A set of fundamental software design concepts has evolved over the history of software
engineering.

Although the degree of interest in each concept has varied over the years, each has stood
the test of time. Each provides the software designer with a foundation from which
more sophisticated design methods can be applied.

M. A. Jackson once said: “The beginning of wisdom for a [software engineer] is to
recognize the difference between getting a program to work, and getting it right.”
Fundamental software design concepts provide the necessary framework for “getting
it right.”

Following are the important software design concepts that span both traditional and

object-oriented software development.

Abstraction:

Each step in the software process is a refinement in the level of abstraction of the software
solution.

Many levels of abstraction are there.

> At the highest level of abstraction, a solution is stated in broad terms using the
language of the problem environment.

> Atlowerlevelsof abstraction, a more detailed descriptionof the solutionis provided.

> As we move through different levels of abstraction, we work to create procedural
and data abstractions.

» A procedural abstraction is a named sequence of instructions that has a specific and
limited function.

An example of a procedural abstraction would be the word open for a door. Open
implies a long sequence of procedural steps (e.g., walk to the door, reach out and grasp
knob, turn knob and pull door, step away from moving door, etc.).

> A data abstraction is a named collection of data that describes a data object.

In the context of the procedural abstraction open, we can define a data abstraction called
door. Like any data object, the data abstraction for door would encompass a set of
attributes that describe the door (e.g., door type, swing direction, opening mechanism,
weight, dimensions).

Architecture:

Software architecture alludes to “the overall structure of the software and the ways in
which that structure provides conceptual integrity for a system”.

In its simplest form, architecture is the structure or organization of program components
(modules), the manner in which these components interact, and the structure of data that
are used by the components.

One goal of software design is to derive an architectural rendering of a system. This
rendering serves as a framework from which more detailed design activities are
conducted. A set of architectural patterns enables a software engineer to reuse design-level
concepts.

The architectural design can be represented using one or more of a number of different
models.

> Structural models represent architecture as an organized collection of program
components.

> Framework models increase the level of design abstraction by attempting to identify
repeatable architectural design frameworks (patterns) that are encountered in similar
types of applications.

» Dynamic models address the behavioral aspects of the program architecture,
indicating how the structure or system configuration may change as a function of
external events.

> Process models focus on the design of the business or technical process that the
system must accommodate.

> Finally, functional models can be used to represent the functional hierarchy of a
system.

Patterns:

Brad Appleton defines a design pattern in the following manner: “a pattern is a named
nugget of inside which conveys that essence of a proven solution to a recurring problem

within a certain context amidst competing concerns.”

A design pattern describes a design structure that solves a particular design within a
specific context and amid “forces” that may have an impact on the manner in which the
patternis applied and used.

The intent of each design pattern is to provide a description that enables a designer to

determine

> Whether the pattern is capable to the current work,

> Whether the pattern can be reused,

» Whether the pattern can serve as a guide for developing a similar, but functionally
or structurally different pattern.

Modularity:

Software architecture and design patterns embody modularity; software is divided into
separately named and addressable components, sometimes called modules that are
integrated to satisfy problem requirements.

It has been stated that “modularity is the single attribute of software that allows a program

to be intellectually manageable”. Monolithic software cannot be easily grasped by a

software engineer. The number of control paths, span of reference, number of variables,
and overall complexity would make understanding close to impossible.

The “divide and conquer” strategy- it’s easier to solve a complex problem when you break
it into manageable pieces. This has important implications with regard to modularity and
software. If we subdivide software indefinitely, the effort required to develop it will
become negligibly small. The effort to develop an individual software module does
decrease as the total number of modules increases. Given the same set of requirements,
more modules means smaller individual size. However, as the number of modules grows,
the effort associated with integrating the modules also grow.

Under modularity or over modularity should be avoided. We modularize a design so that
development can be more easily planned; software increment can be defined and
delivered; changes can be more easily accommodated; testing and debugging can be
conducted more efficiently, and long-term maintenance can be conducted without serious
side effects.

Information Hiding:

The principle of information hiding suggests that modules be “characterized by design
decision that hides from all others.”

Modules should be specified and designed so that information contained within a module
is inaccessible to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of independent
modules that communicate with one another only that information necessary to achieve
software function. Abstraction helps to define the procedural entities that make up the
software. Hiding defines and enforces access constraints to both procedural detail within a
module and local data structure used by module.

The use of information hiding as a design criterion for modular systems provides the
greatest benefits when modifications are required during testing and later, during
software maintenance. Because most data and procedure are hidden from other parts of
the software, inadvertent errors introduced during modification are less likely to
propagate to other locations within software.

Functional Independence:

The concept of functional independence is a direct outgrowth of modularity and the
concepts of abstraction and information hiding.

Functional independence is achieved by developing modules with “single minded”
function and an “aversion” to excessive interaction with other modules. Stated another
way, we want to design software so that each module addresses a specific sub function of
requirements and has a simple interface when viewed from other parts of the program
structure.

Software with effective modularity, that is, independent modules, is easier to develop
because function may be compartmentalized and interfaces are simplified. Independent
sign or code modifications are limited, error propagation is reduced, and reusable
modules are possible. To summarize, functional independence is a key to good design,
and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

» Cohesion is an indication of the relative functional strength of a module.
» Coupling is an indication of the relative interdependence among modules. Cohesion
is a natural extension of the information hiding.
A cohesive module performs a single task, requiring little interaction with other
components in other parts of a program. Stated simply, a cohesive module should do just

one thing.

Coupling is an indication of interconnection among modules in a software structure.
Coupling depends on the interface complexity between modules, the point at which entry
or reference is made to a module, and what data pass across the interface. In software
design, we strive for lowest possible coupling. Simple connectivity among modules results
in software that is easier to understand and less prone to a “ripple effect”, caused when
errors occur at one location and propagates throughout a system.

Refinement:
Stepwise refinement is a top- down design strategy originally proposed by Niklaus Wirth.

A program is developed by successively refining levels of procedural detail. A hierarchy is
developed by decomposing a macroscopic statement of function in a step wise fashion

until programming language statements are reached.

Refinement is actually a process of elaboration. We begin with a statement of function that
is defined at a high level of abstraction. That is, the statement describes function or
information conceptually but provides no information about the internal workings of the
function or the internal structure of the data. Refinement causes the designer to elaborate
on the original statement, providing more and more detail as each successive refinement
occurs.

Abstraction and refinement are complementary concepts. Abstraction enables a
designer to specify procedure and data and yet suppress low-level details. Refinement
helps the designer to reveal low-level details as design progresses. Both concepts aid the
designer in creating a complete design model as the design evolves.

Refactoring :

Refactoring is a reorganization technique that simplifies the design of a component
without changing its function or behavior.

Fowler defines refactoring in the following manner: “refactoring is the process of changing
a software system in such a way that it does not alter the external behavior of the

code(design) yet improves its internal structure.”

When software is refactored, the existing design is examined for redundancy, unused
design elements, inefficient or unnecessary algorithms, poorly constructed or
inappropriate data structures, or any other design failure that can be corrected to
yield a better design. The designer may decide that the component should be refactored
into 3 separate components, each exhibiting high cohesion. The result will be software
that is easier to integrate, easier to test, and easier to maintain.

Design classes:
The software team must define a set of design classes that

> Refine the analysis classes by providing design detail that will enable the classes to
be implemented, and
> Create anew set of designclasses that implementa software infrastructure to support
the design solution.
Five different types of design classes, each representing a different layer of the design

architecture are suggested.

User interface classes: define all abstractions that are necessary for human computer
interaction. In many cases, HCL occurs within the context of a metaphor and the
design classes for the interface may be visual representations of the elements of the

metaphor.

Business domain classes: are often refinements of the analysis classes defined earlier.
The classes identify the attributes and services that are required toimplement some
element of the business domain.

Process classes implement lower —level business abstractions required to fully manage
the business domain classes.

Persistent classes represent data stores that will persist beyond the execution of the

software.

System classes implement software management and control functions that enable the
system to operate and communicate within its computing environment and with the
outside world.

As the design model evolves, the software team must develop a complete set of attributes
and operations for each design class. The level of abstraction is reduced as each analysis

class is transformed into a design representation.

Arlow and Neustadt suggest that each design class be reviewed to ensure that it is “well-
formed.” They define four characteristics of a well- formed design class:

> Complete and sufficient: A design class should be the complete encapsulation of all

attributes and methods that can reasonably be expected to exist for the class.
Sufficiency ensures that the design class contains only those methods that are
sufficient to achieve the intent of the class, no more and no less.

Primitiveness: Methods associated with a design class should be focused on
accomplishing one service for the class. Once the service has been implemented with
a method, the class should not provide another way to accomplish the same thing.
High cohesion: A cohesive design class has a small, focused set of responsibilities
and single- mindedly applies attributes and methods to implement those
responsibilities.

Low coupling: Within the design model, it is necessary for design classes to
collaborate with one another. However, collaborationshould be keptto an acceptable
minimum. If a design model is highly coupled the system is difficult to
implement, to test, and to maintain over time. In general, design classes within a
subsystem should have only limited knowledge of classes in other subsystems. This
restriction, called the law of Demeter, suggests that a method should only sent
messages to methods in neighboring classes.

The Design Model:
The design model can be viewed in two different dimensions.
> The process dimension indicates the evolution of the design model as design tasks
are executed as a part of the software process.
» The abstraction dimension represents the level of detail as each element of the
analysis model is transformed into a design equivalent and then refined iteratively.

g
|Mdysbmodd I
Class dogroms
Cki;iiogroim é:q%f,ﬂs koges '
A A0 modets lequiremenls:
c cﬁc',,,ﬁ 9 Use coses - et Collaboration diogroms C;;s*m'is
0 Coloboralion Usecase diogroms | pin R dioaroms soa B %
a d (0;.5 Aciiviy dogroms Controbiow diograms ITMKCPMN"P
¢ Dato Fiow diogroms g&;g’“ G10910%. | Frocessing narmofives a?g\shg;?o'm
E Coalrofow diogroms 4 a?n’:w Slote diogroms -
5 . Processing narrcives S&a‘s%»ogfoms Sequence diogroms
g o TR 1 Sequence diograms
-é Toormeeanad.,
g Designdoss | | |] TTTTUUpeeeniid.
g Ybs 120ti0ns gl oo | PO
o . 9 & ams
dogroms gﬁ“’ ’:g:’:“ oesign Aciiviy .ci- ;C;f:;% goﬂabcmﬁof] doy07s
Sequen: ‘ omponent diogroms
rp Adtivity iogror
fefn ""w"'\?b Refnemens b qu:,;f.:e g::ms
Dﬁ" 05 Component diogrons
reci2akons 9%‘;: dcsse;og j
low 2‘?&&':’“‘ Activéy diograms .
vt Sequence dogroms | Deployment diogroms
b

Architechure ledsrboce Componantievel Dﬂplz{;h_e'he‘
eements elementy glements s
Process dimension

Figure: Dimensions of the Design Model

The elements of the design model use many of the same UML diagrams that were used in
the analysis model. The difference is that these diagrams are refined and elaborated as a
path of design; more implementation- specificdetailis provided, and architectural structure
and style, components that reside within the architecture, and the interface between the
components and with the outside world are all emphasized.

It is important to mention however, that model elements noted along the horizontal axis are
not always developed ina sequential fashion. In most cases preliminary architectural design
sets the stage and is followed by interface design and component-level design, which often
occur in parallel. The deployment model us usually delayed until the design has been fully
developed.

Data design elements:

Data design sometimes referred to as data architecting creates a model of data and/or
information that is represented at a high level of abstraction. This data model is then
refined into progressively more implementation-specific representations that can be
processed by the computer-based system.

The structure of data has always been an important part of software design.

> At the program component level, the design of data structures and the associated
algorithms required to manipulate them is essential to the criterion of high-quality
applications.

> At the applicationlevel, the translation of a data model into a database is pivotal to
achieving the business objectives of a system.

> At the business level, the collection of information stored in disparate databases and
reorganized into a “data warehouse” enables data mining or knowledge discovery
that can have an impact on the success of the business itself.

Architectural design elements:

The architectural design for software is the equivalent to the floor plan of a house.
The architectural model is derived from three sources.

» Information about the application domain for the software to be built.
> Specific analysis model elements such as data flow diagrams or analysis classes, their
relationships and collaborations for the problem at hand, and
» The availability of architectural patterns
Interface design elements:

The interface design for software is the equivalent to a set of detailed drawings for the
doors, windows, and external utilities of a house.

The interface design elements for software tell how information flows into and out of the
system and how it is communicated among the components defined as part of the

architecture.
There are 3 important elements of interface design:

» The user interface (Ul);

> External interfaces to other systems, devices, networks, or other produces or
consumers of information; and

> Internal interfaces between various design components.

These interface design elements allow the software to communicated externally and
enable internal communication and collaboration among the components that
populate the software architecture.

UI design is a major software engineering action.

The design of a Ul incorporates aesthetic elements (e.g., layout, color, graphics,
interaction mechanisms), ergonomic elements (e.g., information layout and
placement, metaphors, Ul navigation), and technical elements (e.g., Ul patterns,
reusable components). In general, the Ul is a unique subsystem within the overall

application architecture.

The design of external interfaces requires definitive information about the entity to
which information is sent or received. The design of external interfaces should
incorporate error checking and appropriated security features.

UML defines an interface in the following manner:” an interface is a specifier for the

externally- visible operations of a class, component, or other classifier without
specification of internal structure.”

SmartPhone I

/
Suwmmmes

ControlPanel

LT Ddisplay
LEDindicators
keyPadCTCharacteristics
spocakor

roadiKeyStirokal()
decodekKey()
displayStatus()
lightLED=()
sendControlMsg()

==Interfaco>>

KeyPad

ponaal

readkKeystroke()
decodokKaoy()

Figure: UML Interface representation of ContralPanel

COMPONENT-LEVEL DESIGN ELEMENTS
The component-level design for software is equivalent to a set of detailed drawings.
The component-level design for software fully describes the internal detail of each
software component. To accomplish this, the component-level design defines data
structures for all local data objects and algorithmic detail for all processing that

occurs withina component and an interface that allows access to all component
operations.

| _SensorManagementj - - - - - =| Sensor

Figure: UML Component Diagram

Deployment-level design elements:

Deployment-level design elements indicated how software functionality and

subsystems will be allocated within the physical computing environment that will
support the software

'-----..-.-.-.1
|

Control panel CPIl server

R —_—
Security I HomeownerAccess I

e

Personal computer
ExternalAccess I-

e — ——— -

— —_
Security I Surveillance I

—_— —
HomeMcncgementI Communication I

Figure: UML Deployment Diagram

Creating an Architectural Design

The architectural design is the preliminary blueprint from which software is

constructed.

Software Architecture

Today, effective software architecture and its explicit representation and
design have become dominant themes in software engineering.

» What is Architecture?

“The architecture ofasystemis a comprehensive frameworkthatdescribes its
form and structure - its components and how they fit together.”

In simple words, architecture captures system structure in terms of
components and how they interact.

Architecture is defined as the fundamental organization of a system,
embodied in its components, their relationships to each other and the
environment, and the principles governing its design and evolution.

> What is Software Architecture?

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software components, the
externally visible properties of those components, and the relationships among
them.

The architecture is not the operational software. Rather, it is a
representation that enables you to

1. Analyze the effectiveness of the design in meeting its stated requirements,

2. Consider architectural alternatives at a stage when making design
changes isstill relatively easy, and

3. Reduce the risks associated with the construction of the software.

» Why Is Architecture Important?

There are three key reasons stating that software architecture is important:

1. Representations of software architecture are an enabler for
communication between all parties (stakeholders) interested in the

development of a computer-based system.

2. The architecture highlights early design decisions that will have a
profound impact on all software engineering work that follows and, as

important, onthe ultimate success of the system as an operational entity.

3. Architecture “constitutes a relatively small, intellectually graspable model

of how the system is structured and how its components work together”.

Design of Software Architecture

The design of software architecture considers two levels of the design
pyramid:
1. Data Design
2. Architectural Design
Data design enables us to represent the data components of the
architecture in conventional systems and class definitions (encapsulating
attributes and operations) in object-oriented systems.
Architectural design focuses on the representation of the structure of

software components, their properties, and the interactions.

» Data Design

The data design action translates data objects defined as a part of the

analysis model into data structures at the software component level and

whenever necessary, a database architecture at the application level

» Data Design at the Architectural Level :

Today, businesses have dozens of databases serving many applications
encompassing hundreds of gigabytes of data. The Challenge is to extract useful
information from this data environment, particularly when the information
desiredis cross-functional (e.g., information that can be obtained only if specific
marketing data are cross-correlated with product engineering data).

To solve this challenge, the business IT community has developed data
mining techniques, also called knowledge discovery in databases (KDD), that
navigate through existing databases in an attempt to extract appropriate
business- level information. However, the existence of multiple databases, their
different structures, the degree of detail contained with the databases, and many
other factors make data mining difficult within an existing database

environment.

An alternative solution, called a data warehouse, adds an additional layer
to the data architecture. A data warehouse is a separate data environment that is
not directly integrated with day-to-day applications but encompasses all data
used by a business. In a sense, a data warehouse is a large, independent database

that has access to the data that are stored in databases that serve the set of

applications required by a business.

» Data Design at the Component Level :

Data design at the component level focuses on the representation of data

structures that are directly accessed by one or more software components.

Wasserman has proposed a set of principles that may be used to specify and

design such data structures. Following are the set of principles for data

specification :

1.

The systematic analysis principles applied to function and behavior
should also be applied to data. Representations of dat flow and content
should also be developed and reviewed. Data objects should be identified,
alternative data organizations should be considered, and the impact ofdata

modeling on software design should be evaluated.

. All data structues and the operations to be performed on each should

be identified. The design of an efficient data structure must take the
operations to be performed on the data structure into account. The

attributes and operations encapsulated within a class satisfy this principle.

. A mechanism for defining the content of each data object should be

established and used todefine both data and the operations applied
to it. Class diagrams define the data items(attributes) contained within a
class and the processing(operations) that are applied to these data items.
Low-level datadesign decisions should be deferred until late in the
design process. A process of stepwise refinement may be used for the
design of data. That is, overall data organization may be defined during
requirements analysis,refined during data design work, and specified in detail

during component-level design.

The represenattion of a data structure shold be known only to those modules
that must make direct use of the data contained within the structure. The
concept of information hiding and the related concept of coupling provide

important insight into the quality of a software design.

. A library of useful data structures and the operations that may be

applied to them should be developed. A class library achieves this.

. A software design and programming language should support the

specification andrealization ofabstract data types. The implementation of
sophisticated data structure can be made exceedingly difficult if no means for

direct specification of the structure exists in the programming language

chosen for implementation.
These priciples form a basis for a component-level data design approach that

canbe integrated into both the analysis and design activities.

Architecture Styles and Patterns:

The architectural style is also a template for construction. The software
thatis built for computer-based systems also exhibits one of many architectural
styles. Each style describes a system category that encompasses

1. A set of computers that perform a function required by a system.
2. A set of connectors that enable “communication, coordination,
andcooperation” among components

3. Constraints that define how components can be integrated to form the
system

4. Semantic models that enable a designer to understand the overall
propertiesof a system by analyzing the known properties of its
constituent parts.

An architectural style is a transformation that is imposed on the design of
an entire system. The intent is to establish a structure for all components of the
system. In the case where an existing architecture is to be reengineered the
imposition of an architectural style will result in fundamental changes to the
structure of the software including a reassignment of the functionality of
components.

An architectural pattern, like an architectural style, imposes a
transformation on the design of an architecture. However, a pattern differs from

a style in a number of fundamental ways:

(1) the scope of a pattern is less broad, focusing on one aspect of the
architecture rather than the architecture in its entirety;

(2) a pattern imposes a rule on the architecture, describing how the
software will handle some aspect of its functionality at the infrastructure level
(e.g., concurrency)

(3) architectural patterns tend to address specific behavioral issues within
the context of the architecture (e.g, how real-time applications handle

synchronization or interrupts).

Patterns can be used in conjunction with an architectural style to shape the

overall structure of a system.

A Brief Taxonomy of Architectural Styles:

» Data-centered architecture:
A data store (e.g, a file or database) resides at the center of this
architecture and is accessed frequently by other components that update, add,
delete, orotherwise modify data within the store.Following figure illustrates a

typical data-centered style.

Client Client
software software

Client
software

Client
software

Dota store
(repository or

blackboard)

Client

Client
software

software

Client Client
software software

Figure: Data-centered Architecture

Client software accesses a central repository. In some cases the data
repository is passive. That is, client software accesses the data independent of
any changes to the data or the actions of other client software. A variation
onthis approach transforms the repository into a “blackboard” that sends
notifications to client software when data of interest to the client changes.

Data-centered architectures promote integrability.

> Data-flow architecture:

This architecture is applied when input data are to be transformed through a
series of computational or manipulative components into output data. A pipe-
and-filter pattern has a set of components, called filters, connected by pipes that
transmit data from one component to the next. Each filter works
independentlyof those components upstream and downstream, is designed to

expect data input of a certain form, and produces data output (to the next

filter) of aspecified form. However, the filter does not require knowledge of
the workings ofits neighboringfilters. If the data flow degenerates into a single
line of transforms, it is termed batch sequential. This structure accepts a
batch of data and then applies a series of sequential components (filters) to

transform it.

Pipes | Filter Filter

Filter Filter Filter II

| Filter Filter Filter
=

Filter

Filter

YYY

Pipes and filters

Figure: Data-flow Architecture

» Call and return architecture:

This architectural style enables you to achieve a program structure that is
relatively easy to modify and scale. A number of substyles exist within this
category:

1. Main program/subprogram architecture: This classic program structure
decomposes function into a control hierarchy where a “main” program
invokes a number of program components that in turn may invoke still other

components. Following figure illustrates architecture of this type.

Main program

-

Controller Controller Controller
subprogram subprogram subprogram
Application Application Application Application Application
subprogram subprogram subprogram subprogram subprogram
Application Application
subprogram subprogram

Figure: Main program/Sub program Architecture

2. Remote procedure call architecture: The components of a main
program/subprogram architecture are distributed across multiple
computerson a network.

» Object-oriented architecture:
The components of a system encapsulate data and the operations that
mustbe applied to manipulate the data. Communication and coordination
between components are accomplished via message passing.

» layered architecture:
The basic structure of a layered architecture is illustrated in the following figure

Components

Utility layer

Core layer

OO

Figure: Layered Arhitecture

A number of different layers are defined, each accomplishing operations
that progressively become closer to the machine instruction set. At the outer
layer, components service user interface operations. At the inner layer,
components performoperating system interfacing. Intermediate layers provide

utility services and application software functions.

Architectural Patterns:

A software architecture may have a number of architectural patterns

thataddress issues such as concurrency, persistence and distribution.

» Concurrency: Many applications must handle multiple tasks in a manner

thatsimulates parallelism.
For example:

v' operating system process management pattern
v’ task scheduler pattern
» Persistence: Data persists if it survives past the execution of the process
thatcreated it.
For example:
v' a database management system pattern that applies the storage
andretrieval capability of a DBMS to the application architecture
v' an application level persistence pattern that builds
persistence features into the application architecture
» Distribution: The manner in which systems or components within

systemscommunicate with one another in a distributed environment

For example: A broker acts as a ‘middle-man’ between the client
componentand a server component. CORBA is an example of a broker

architecture.
Organization and Refinement:

Because the design process often leaves you with a number ofarchitectural
alternatives, it is important to establish a set of design criteria that can be used

to assess an architectural design that is derived. The following questions provide

insight into an architectural style:

Control:

v
v

\

Data:

v

How is control managed within the architecture?

Does a distinct control hierarchy exist, and if so, what is the
role ofcomponents within this control hierarchy?

How do components transfer control within the system?
How is control shared among components?

What is the control topology (i.e. the geometric form that the control
takes)?

Is control synchronized or do components operate asynchronously?

How are data communicated between components?

Is the flow of data continuous, or are data objects passed to the

systemsporadically?

What is the mode of data transfer (ie, are data passed from one
componentto another or are data available globally to be shared among
system components)?

Do data components (e.g., a blackboard or repository) exist, and if so, what
is their role?

How do functional components interact with data components?

Are data components passive or active (i.e., does the data component actively
interact with other components in the system)?

How do data and control interact within the system?

These questions provide the designer with an early assessment of design

quality and lay the foundation for more detailed analysis of the architecture.

Architectural Design:

As architectural design begins, the software to be developed must be putinto

context - that is, the design should define the external entities(other systesms,

devices, people) thatthe software interacts with and the nature of the interaction.

This information can generally be acquired from the analysis model and all other

information gathered during requirements engineering.

Once context is modeled and all external software interfaces have been
described, the designer specifies the structure of the system by defining and
refining software components that implement the architecture.
Thies process continues iteratively until a complete architectural structure has
been derived.
Representing the system in context:

At the architectural design level, a software architect uses an architectural
context diagram(ACO) to model the manner in which software interacts with
entities external to its boundaries.

The generic structure of the architectural context diagram is illustrated in figure.

Superordinate systems

Peers

.....

SRR

Subordincte systems

Actors

Figure: Architectural Context Diagram

Systems that interacts with the target system are represented
as:

Superordinate systems: These are the systems which consider the (use the) target
system inorder to complete its higher valued activities.

Subordinate systems: These are the systems which funtion along with the
target system. Hence, supporting the target system in successfully completing
its processing.

Peer systems or Peers: These are the systems which directly interact with the

target system same as client-server interaction.

Actors: These are specimens or any entities possesing a definite set of roles and
interacting with the system. During this interaction an actor can either provide
or accept information from the system.

Each of these external entities communicates with the target system
through an interface(the small shaded rectangles)

Following is the ACD(Architectural Context Diagram) depicting the safe

home security systems.

Indicator - An abstraction that represents all mechanims for indicating that an
alarm condition is occuring.(e.g. alarm siren, flash lights, bell).

Controller- An abstraction that depicts the mechanism that allows the arming or
disarming of a node. If controller reside on a network, they have the ability to
communicate with one another.

Each of these archetypes is depicted using UML notation as shown in figure:

Controller

Communicates with

Tl__,

Node

Zs
i |

Detector Indicator

UML Relationships for Safe Home Security function archetypes

As archetypes represents only abstractions. Hence, they can be further
refined into components just by refining these abstractions. For example,
detector might be refined into a class hierarchy of sensors.

Refining the Architecture into components:

As the software architecture is refined into components the structure of
the system begins to emerge, for this purpose we initially consider the classes
which were described as part of the analysis mode. These analysis classes forms
the major entities of application domain. Hence, the application domain is one
source for the derivation and refinement of components. Another source is the

infrastructure domain. The architecture must accommodate components but

have no business connection to the application domain.

The interfaces depicted in the architecture context diagram imply one or
morespecialized components that process the data that fow across the interface.
In some case graphical user interface, a complete subsystem architecture with

many components must be designed.

» Components of the software architecture are dervied from three
sources:

o The application domain
o The infrastructure domain
o The interface domain

For safe home security system, we might define the set of top-level components as
follows:

External Communication Management- Coordinates communication of the
security function with external entities, for example, internet-based systesm,
external alarm notification.

Control Panel Processing-manages all control panel functionality.

Detector Management- Coordinates access to all detectors attached to the system
Alarm Processing- verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and then
positioned within the overall SafeHome architecture. Design classes(with
appropriate attributes and operations) would be defined for each. It is important to
note, how-ever, that the design details of all attributes and operations would notbe
specified until component-level design.

The overall architectural structure is illustrated in the following figure.

SofeHome
executive

Function
~a selection

- N N i
N ~e ~

External 4

R s
communicetion S NE Se
monagement &

p .
P \ ,—L‘
’ ~
s DA - Security Surveilionce | e oo Home
= ?”cncgemer"
% - %

nternet

Bemaaing 24 Y o
interrace o \ “ao

-) i

Contol panel Detector Alarm
processing management processing

Figure: Overall architectural strukture for Safe Home with top-level
__components

Transactions are acquired by external communication management as
they move in from components that process the SafeHome GUI and the internet
interface. This information is managed by a SafeHome executive componet that
selects the appropriate product function. The control panel processing
component interacts with homeowner to arm/disarm the security fucntion.
The dector management component polls sensors to detect an alaram condition,

and ahte alarm processing component produces output when alarm is detected.

Describing Instantiations of the System:

The architectural design that has been modeled to this pointis still relatively high
level. The context of the system has been represented, archetypes that indicate the
important abstractions within the problem domain have been defined, the overall
structure of the systemis apparent,and the major software components have been
identified. However, further refinement (recall that all design is iterative) is still

necessary.

To accomplish this, an actual instantiation of the architecture is
developed. By this I mean that the architecture is applied to a specific problem
with the intent of demonstrating that the structure and components are

appropriate.

The following figure illustrates an instantiation of the SafeHome
architecture for the security system. Components shown in overall architecture
are elaborated toshow additional detail. For example, the detector management
component interacts with a scheduler infra-structure component that

implements polling of each sensor object used by the security system.

Assessing Alternative Architectural Designs:

At its best, design results in a number of architectural alternatives that are
each assessed to determine which is the most appropriate for the problem to be
solved. In the sections that follow, we consider the assessment of alternatives

architectural designs.

L] Sobetione
CO et

communicasion
monogamest

Aorn
processing

processng Schedk Sk
[fuceg commencoton

®
Figure: An Instantiation of security ﬁmcliun with component elaboration

» An Architecture Trade-Off Analysis Method:

The Software Engineering Institute (SEI) has developed an architecture trade-off
analysis method (ATAM) that establishes an iterative evaluation process for

softwarearchitectures. The design analysis activities that follow are performed

iteratively:

1. Collect scenarios. A set ofuse cases is developed to represent the

system from the user’s point of view.

2. Elicit requirements, constraints, and environment description. This
information is determined as part of requirements engineering and is
used tobe certain that all stakeholder concerns have been addressed.

3. Describe the architectural styles/patterns that have been

chosen toaddress the scenarios and requirements. The
architectural style(s) should be described using one of the following

architectural views:
» Module view for analysis of work assignments with components

andthe degree to which information hiding has been achieved.
» Process view for analysis of system performance.
» Data flow view for analysis of the degree to which the
architecturemeets functional requirements.
4. Evaluate quality attributes by considering each attribute in

isolation. The number of quality attributes chosen for analysis is a
function of the timeavailable for review and the degree to which quality
attributes are relevant to the sys-tem at hand. Quality attributes for
architectural design assessment include reliability, performance, security,
maintainability, flexibility, testability, portability, reusability, and
interoperability.

5. Identify the sensitivity of quality attributes to various architectural
attributes for a specific architectural style.This can be
accomplished bymaking small changes in the architecture and
determining how sensitive a quality attribute, say performance, is to
the change. Any attributes that are significantly affected by variation in
the architecture are termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the
sensitivity analysis conducted in step 5. The SEI describes this
approachin the following manner.

Once the architectural sensitivity points have been determined,
findingtrade-off points is simply the identification of architectural

elements to

which multiple attributes are sensitive. For example, the performance of a
client-server architecturemightbe highly sensitive to the number of servers
(performance increases, within some range, by increasing the number of
servers). The number of servers, then, is a trade-off point with respect to

this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps
5 and 6, some architecture alternatives may be eliminated, one or more of the
remaining architectures may be modified and represented in more detail and

then the ATAM Steps are reapplied.

» Architectural Complexity:

A useful technique for assessing the overall complexity of a proposed
architecture is to consider dependencies between components within the

architecture. These dependencies are driven by information/control flow within the

system. Zhao suggests three types of dependencies:

Sharing dependencies represent dependence relationships among
consumers who use the same resource or producers who produce for the same
consumers. For example, for two components u and v, if u and v refer to the same

global data, then there exists a shared dependence relationship between u and v.

FlowDependenciesrepresentdependence relationships between producers
and consumers of resource. For example for two components u and v, if u must
complete before controls flows into v or if u communicates with v by parameters,

then there exists a flow dependence relationship between u and v.

Constrained dependencies represent constraints on the relative flow of
control among a set of activities. For example, for two components u and v, if u
andv cannot execute at the same time then there exists a constrained dependence
relationship between u and v.

The sharing and flow dependencies noted by Zhao are similar to the concept of
coupling. Coupling is an important design concept that is applicable at the
architectural level and at the component level.

» Architectural Description Languages:

Architectural description language (ADL) provides a semantics and
syntax for describing software architecture. ADL should provide the designer
with the ability to decompose architectural components, compose individual
components into larger architectural blocks, and represent interfaces

(connection mechanisms) between components.

Once descriptive, language-based techniques for architectural design have
been established, it is more likely that effective assessment methods for

architectures will be established as the design evolves.

	8b2f6a5ac51d598e7f5a8ed00325185acdc198a9d1ad470da4d6e3c7aec6b573.pdf
	8b2f6a5ac51d598e7f5a8ed00325185acdc198a9d1ad470da4d6e3c7aec6b573.pdf
	8b2f6a5ac51d598e7f5a8ed00325185acdc198a9d1ad470da4d6e3c7aec6b573.pdf

