

UNIT - II

SOFTWARE REQUIREMENTS & REQUIREMENTS ENGINEERING PROCESS

Part I

Software Requirements:

1. Functional and non-functional requirements

2. user requirements

3. system requirements

4. interface specification

5. the software requirements document

Part II

Requirements engineering process:

1. Feasibility studies

2. Requirements elicitation and analysis

3. Requirements validation

4. Requirements management

Part I

Part I

Software Requirements:

1. Functional and non-functional requirements

2. user requirements

3. system requirements

4. interface specification

5. the software requirements document

1. Functional and non-functional requirements

Functional and Non-functional Requirements:

Software system requirements are often classified as functional

requirements or nonfunctional requirements:

1. Functional requirements: These are statements of services the system

should provide, how the system should react to particular inputs, and how

the system should behave in particular situations.

In some cases, the functional requirements may also explicitly

state what the system should not do.

2. Non-functional requirements: These are constraints on the services

or functions offered by the system.

They include timing constraints, constraints on the development

process, and constraints imposed by standards.

Non-functional requirements often apply to the system as a

whole, rather than individual system features or services.

Functional requirements:

The functional requirements for a system describe what the

system should do. These requirements depend on

➢ the type of software being developed,

➢ the expected users of the software, and

➢ The general approach taken by the organization

when writing requirements.

When expressed as user requirements, functional requirements

are usually described in an abstract way that can be understood by

system users. However, more specific functional system requirements

describe the system functions, its inputs and outputs, exceptions, etc.,

in detail.

Functional system requirements vary from general requirements

covering what the system should do to very specific requirements reflecting

local ways of working or an organization’s existing systems.

Example:

Functional requirements for the MHC-PMS system, used to maintain

information about patients receiving treatment for mental health

problems:

In principle, the functional requirements specification of a system

should be both complete and consistent.

➢ Completeness means that all services required by the user

should be defined.

➢ Consistency means that requirements should not have

contradictory definitions.

In practice, for large, complex systems, it is practically impossible

to achieve requirements consistency and completeness.

One reason for this is that it is easy to make mistakes and

omissions when writing specifications for complex systems.

Another reason is that there are many stakeholders in a large

system. A stakeholder is a person or role that is affected by the system

in some way. Stakeholders have different and often inconsistent needs.

These inconsistencies may not be obvious when the requirements are

first specified, so inconsistent requirements are included in the

specification.

The problems may only emerge after deeper analysis or after the

system has been delivered to the customer.

Non-functional requirements:

Non-functional requirements are the requirements that are not

directly concerned with the specific services delivered by the system to

the users.

They may relate to emerge system properties such as reliability ,

response time, and store occupancy. Alternatively, they may define

constraints on the system implementation such as the capabilities of I/O

devices or the data representations used in interfaces with other

systems.

Non-functional requirements are often more critical than

individual functional requirements. However, failing to meet a non-

functional requirement can mean that the whole system is unusable.

For example, if an aircraft system does not meet its reliabilit y

requirements, it will not be certified as safe for operation.

Although it is often possible to identify which system components

implement specific functional requirements (e.g., there may be formatting

components that implement reporting requirements), it is often more

difficult to relate components to non-functional requirements. The

implementation of these requirements may be diffused throughout the

system. There are two reasons for this:

1. Non-functional requirements may affect the overall architecture of a

system rather than the individual components. For example, to ensure that

performance requirements are met, you may have to organize the

system to minimize communications between components.

2. A single non-functional requirement, such as a security requirement,

may generate a number of related functional requirements that define new

system services that are required. In addition, it may also generate

requirements that restrict existing requirements.

Classification of non-functional requirements:

Non-functional requirements arise through user needs, because of

budget constraints, organizational policies, the need for interoperability

with other software or hardware systems, or external factors such as safety

regulations or privacy legislation.

Following figure shows the classification of non-functional
requirements.

From this diagram we can see that the non-functional requirements may

come from required characteristics of the software (product requirements),

the organization developing the software (organizational requirements),

or from external sources

1. Product requirements: These requirements specify or constrain the

behavior of the software.

Examples include performance requirements on how fast the

system must execute and how much memory it requires, reliabilit y

requirements that set out the acceptable failure rate, security

requirements, and usability requirements.

2. Organizational requirements: These requirements are broad system

requirements derived from policies and procedures in the customer’s

and developer’s organization.

Examples include operational process requirements that define

how the system will be used, development process requirements that

specify the programming language, the development environment or

process standards to be used, and environmental requirements that

specify the operating environment of the system.

3. External requirements: This broad heading covers all requirements

that are derived from factors external to the system and its

development process.

These may include regulatory requirements that set out what must

be done for the system to be approved for use by a regulator, such as a

central bank; legislative requirements that must be followed to ensure that

the system operates within the law; and ethical requirements that ensure

that the system will be acceptable to its users and the general public.

Whenever possible, we should write non-functional requirements

quantitatively so that they can be objectively tested. Following figure shows

metrics that you can use to specify non-functional system properties.

We can measure these characteristics when the system is being tested to

check whether or not the system has met its nonfunctional requirements.

Non-functional requirements such as reliability, safety, and

confidentiality requirements are particularly important for critical

systems.

Functional Requirements Non-Functional Requirements

1. A functional requirement defines a

 system or its component.

A non-functional requirement defines

the quality attribute of a software

system.

2. It specifies “What should the

software

 system do?”

It places constraints on “How should

the software system fulfil the functional

requirements?”

3. Functional requirement is specified

 by User.

Non-functional requirement is specified

by technical peoples e.g. Architect,

Technical leaders and software

developers.

4. It is mandatory. It is not mandatory.

5. It is captured in use case. It is captured as a quality attribute.

6. Defined at a component level. Applied to a system as a whole.

7. Helps you verify the functionality of

 the software.

Helps you to verify the performance of

the software.

8. Functional Testing like System,

 Integration, End to End, API testing,

 etc are done.

Non-Functional Testing like

Performance, Stress, Usability, Security

testing, etc are done.

9. Usually easy to define. Usually more difficult to define.

Example

1) Authentication of user whenever

 he/she logs into the system.

2) System shutdown in case of a cyber

 attack.

3) A Verification email is sent to user

 whenever he/she registers for the first

 time on some software system.

Example

1) Emails should be sent with a

 latency of no greater than 12 hours

 from such an activity.

2) The processing of each request

 should be done within 10 seconds

3) The site should load in 3 seconds

 when the number of simultaneous

 users are > 10000

User requirements:
These requirements describe what the end-user wants from the software system. User
requirements are usually expressed in natural language and are typically gathered through
interviews, surveys, or user feedback.

1. User requirements are written for customers
2. They are usually expresses in natural language.

3. Because of this, they are easy to understand
4. They describe services and features provided by system
5. This may include diagrams and tables which are understood by system users

6. The system users do not need technical knowledge to understand these
7. User requirements are for client managers, system end users, client engineers,

contractor managers and system architects
8. They are gathered through various means such as interviews, surveys, or user

feedback.

This example from a mental health care patient management

system (MHC- PMS) shows how a user requirement may be expanded

into several system requirements.

Different levels of requirements are useful because they

communicate information about the system to different types of reader.

 System requirements:

These requirements specify the technical characteristics of the software system, such as its

architecture, hardware requirements, software components, and interfaces. System

requirements are typically expressed in technical terms and are often used as a basis for

system design.

Salient features

1. Written for implementation team

2. They are written in technical language / technical terms

3. System Requirements describe the detailed description of services, features and

complete operations of system

4. System Requirements may include system models and system designs

5. System Requirements can be understood by implementation team with technical

knowledge.

6. System Requirements are for architects, software Developers, client engineers, system

users and overall implementation team

7. They form basis for a system design

Interface Specification:
What is Interface?

What is specification?

What is Interface specification?

Types of Interface Specification:

For 5 marks question

Interface Specification:

Most systems must operate with other systems and the operating interfaces must be

specified as part of the requirements.

Three types of interface may have to be defined

➢ Procedural interfaces where existing programs or sub-systems offer

a range of services that are accessed by calling interface procedure s .

These interfaces are sometimes called Application Programmi ng

Interfaces (APIs)

➢ Data structures that are exchanged that are passed from one sub-

system to another. Graphical data models are the best notations for

this type of description

➢ Data representations that have been established for an existing sub-

system Formal notations are an effective technique for interface

specification.

oOo

Software Requirements Document:

The software requirements document (sometimes called the

software requirements specification or SRS) is an official statement of what

the system developers should implement.

It should include both the user requirements for a system and a

detailed specification of the system requirements.

Sometimes, the user and system requirements are integrated into

a single description. In other cases, the user requirements are defined in

an introduction to the system requirements specification. If there are a

large number of requirements, the detailed system requirements may

be presented in a separate document.

Requirements documents are essential when an outside contractor

is developing the software system. The requirements document has a

diverse set of users, ranging from the senior management of the

organization that is paying for the system to the engineers responsible for

developing the software. Following figure shows possible users of the

document and how they use it.

The image in the next page shows one possible organization for a

requirements document that is based on an IEEE standard for

requirements documents (IEEE, 1998). This standard is a generic

standard that can be adapted to specific uses.

In this case, they have extended the standard to include information

about predicted system evolution. This information helps the maintainers

of the system and allows designers to include support for future system

features.

Requirements specification:

Requirements specification is the process of writing down the user and

system requirements in a requirements document.

Ideally, the user and system requirements should be clear,

unambiguous, easy to understand, complete, and consistent. In practice,

this is difficult to achieve as stakeholders interpret the requirements in

different ways and there are often inherent conflicts and inconsistencies

in the requirements.

The user requirements for a system should describe the functional

and nonfunctional requirements so that they are understandable by

system users who don’t have detailed technical knowledge. Ideally, they

should specify only the external behavior of the system. The

requirements document should not include details of the system

architecture or design. Consequently, if you are writing user

requirements, you should not use software jargon, structured notations,

or formal notations. You should write user requirements in natural

language, with simple tables, forms, and intuitive diagrams.

System requirements are expanded versions of the user

requirements that are used by software engineers as the starting point for

the system design. They add detail and explain how the user requirements

should be provided by the system. They may be used as part of the

contract for the implementation of the system and should therefore be a

complete and detailed specification of the whole system. Ideally, the

system requirements should simply describe the external behavior of

the system and its operational constraints. They should not be concerned

with how the system should be designed or implemented.

User requirements are almost always written in natural language

supplemented by appropriate diagrams and tables in the requirements

document. System requirements may also be written in natural language

but other notations based on forms, graphical system models, or

mathematical system models can also be used. Following figure

summarizes the possible notations that could be used for writing system

requirements.

Ways of writing system requirements specification

oOo

Part II

Part II

Requirements engineering process:

1. Feasibility studies

2. Requirements elicitation and analysis

3. Requirements validation

4. Requirements management

Requirements Engineering Process:

The requirements engineering process aims to produce an agreed

requirements document that specifies a system satisfying stakeholder

requirements.

Requirements are usually presented at two levels of detail. End-users

and customers need a high-level statement of the requirements; system

developers need a more detailed system specification.

There are four main activities in the requirements engineering process:

1. Feasibility study (These focus on assessing if the system is

useful to the business),

2. Requirements elicitation and analysis (discovering requirements),

3. Requirements specification (Converting these requirements i

nto some standard form), and

4. Requirements validation (checking that the requirements actually

define the system that the customer wants).

Feasibility study:

An estimate is made of whether the identified user needs may be

satisfied using current software and hardware technologies.

The study considers whether the proposed system will be cost-

effective from a business point of view and if it can be developed within

existing budgetary constraints.

A feasibility study should be relatively cheap and quick.

The result should inform the decision of whether or not to go ahead

with a more detailed analysis.

➢ A feasibility study is a short, focused study that should take place early

in the RE process.

➢ It should answer three key questions:

a) does the system contribute to the overall objectives of the
organization?

b) can the system be implemented within schedule and budget

using current technology? And

c) can the system be integrated with other systems that are used?

If the answer to any of these questions is no, you should

probably not go ahead with the project.

Requirements elicitation and analysis:

After an initial feasibility study, the next stage of the requirements

engineering process is requirements elicitation and analysis.

In this activity, software engineers work with customers and

system end- users to find out about the application domain, what

services the system should provide, the required performance of the

system, hardware constraints, and so on.

Requirements elicitation and analysis may involve a variety of

different kinds of people in an organization.

A system stakeholder is anyone who should have some direct or

indirect influence on the system requirements. Stakeholders include end

users who will interact with the system and anyone else in an

organization who will be affected by it. Other system stakeholders might

be engineers who are developing or maintaining other related systems,

business managers, domain experts, and trade union representatives.

A process model of the elicitation and analysis process is shown in

Figure below.

Each organization will have its own version or instantiation of this

general model depending on local factors such as the expertise of the staff ,

the type of system being developed, the standards used, etc.

The process activities are:

1. Requirements discovery:

This is the process of interacting with stakeholders of the system

to discover their requirements. Domain requirements from

stakeholders and documentation are also discovered during this

activity.

2. Requirements classification and organization:

This activity takes the unstructured collection of requireme nt s,

groups related requirements, and organizes them into coherent clusters.

The most common way of grouping requirements is to use a model of

the system architecture to identify sub-systems and to associate

requirements with each sub-system. In practice, requirem e nts

engineering and architectural design cannot be completely separate

activities.

3. Requirements prioritization and negotiation:

Inevitably, when multiple stakeholders are involved,

requirements will conflict. This activity is concerned with prioritizing

requirements and finding and resolving requirements conflicts through

negotiation. Usually, stakeholders have to meet to resolve differences

and agree on compromise requirements.

4. Requirements specification:

The requirements are documente d and input into the next round of

the spiral. Formal or informal requireme nts documents may be produc e d .

The above figure shows that requireme nts elicitation and analysis is an

iterative process with continu al feedback from each activity to other

activities.

The process cycle starts with requirements discovery and ends with

the requirements documentation. The analyst’s understanding of the

requirements improves with each round of the cycle. The cycle ends when

the requirements document is complete.

Eliciting and understanding requirements from system stakeholders is

a difficult process for several reasons:

1. Stakeholders often don’t know what they want from a computer system

except in the most general terms; they may find it difficult to articulate

what they want the system to do; they may make unrealistic demands

because they don’t know what is and isn’t feasible.

2. Stakeholders in a system naturally express requirements in their own

terms and with implicit knowledge of their own work. Requirements

engineers, without experience in the customer’s domain, may not

understand these requirements.

3. Different stakeholders have different requirem ents and they may express

these in different ways. Requirements engineers have to discover all

potential sources of requirem ents and discover commonalities and conflict.

4. Political factors may influence the requirements of a system. Managers

may demand specific system requirements because these will allow them

to increase their influence in the organization.

5. The economic and business environment in which the analysis takes place is

dynamic. It inevitably changes during the analysis process. The importance of

particular requirements may change. New requirements may emerge from

new stakeholders who were not originally consulted.

Requirem ents specification:

Requirements specification is the activity of translating the

information gathered during the analysis activity into a document that

defines a set of requirements. Two types of requirements may be included

in this document. User requirements are abstract statements of the system

requirements for the customer and end-user of the system; system

requirements are a more detailed description of the functionality to be

provided.

Requirem ents validation:

Requirements validation is the process of checking that requireme n t s

actually define the system that the customer really wants.

It overlaps with analysis as it is concerned with finding problems

with the requirements.

Requirements validation is important because errors in a

requirements document can lead to extensive rework costs when these

problems are discovered during development or after the system is in

service.

The cost of fixing a requirements problem by making a system

change is usually much greater than repairing design or coding errors.

During the requirements validation process, different types of

checks should be carried out on the requirements in the requirements

document. These checks include:

1. Va l i d i ty c he c k s :

A user may think that a system is needed to perform certain

functions. However, further thought and analysis may identify

additional or different functions that are required. Systems have

diverse stakeholders with different needs and any set of

requirements is inevitably a compromise across the stakeholder

community.

2. C ons i s te nc y c he c k s :

Requirements in the document should not conflict. That is,

there should not be contradictory constraints or different descriptions

of the same system function.

3. C om pl e te ne ss c he c k s :

The requirements document should include requirements

that define all functions and the constraints intended by the system

user.

4. R e a l i sm c he c k s :

Using knowledge of existing technology, the requirements

should be checked to ensure that they can actually be implemented .

These checks should also take account of the budget and schedule

for the system development.

5. Ve r i fia bi l i ty :

To reduce the potential for dispute between customer and

contractor, system requirements should always be written so that they

are verifiable. This means that you should be able to write a set of

tests that can demonstrate that the delivered system meets each

specified requirement.

There are a number of requirements validation techniques that can

be used individually or in conjunction with one another:

1. R e qui r e m e nts r e v i e w s :

The requirements are analyzed systematically by a team of

reviewers who check for errors and inconsistencies.

2. P r ototy p i ng :

In this approach to validation, an executable model of the system

in question is demonstrated to end-users and customers. They can

experiment with this model to see if it meets their real needs.

3. Te st- c a se g e ne r a ti on:

Requirements should be testable. If the tests for the requirements

are devised as part of the validation process, this often reveals

requirements problems. If a test is difficult or impossible to design, this

usually means that the requirements will be difficult to implement and

should be reconsidered. Developing tests from the user requirements

before any code is written is an integral part of extreme programming.

Requirements management:

Once a system has been installed and is regularly used, new

requirements inevitably emerge due to business, organizational, and

technical changes which lead to changes to the requirements for a

software system.

Requirements management is the process of understanding and

controlling changes to system requirements.

You need to establish a formal process for making change

proposals and linking these to system requirements.

The formal process of requirements management should start as

soon as a draft version of the requirements document is available.

However, you should start planning how to manage changing

requirements during the requirements elicitation process.

Requirements managem ent planning:

Planning is an essential first stage in the requirements management

process. It establishes the level of requirements management detail that is

required.

During this requirements management stage, you have to decide on:

1. R e qui r e m e nts i de nti fic a ti on:

Each requirement must be uniquely identified so that it can be

cross- referenced with other requirements and used in traceability

assessments.

2. A c ha ng e m a na g e m e nt pr oc e ss :

This is the set of activities that assess the impact and cost of
changes.

3. Tr a c e a bi l i ty po l i c i e s :

These policies define the relationships between each requirement

and between the requirements and the system design that should

be recorded. The traceability policy should also define how these

records should be maintained.

4. Tool suppor t :

Requirements management involves the processing of large amounts

of information about the requirements. Tools that may be used range from

specialist requirements management systems to spreadsheets and simple

database systems.

Requirements management needs automated support and the software tools

for this should be chosen during the planning phase. You need tool support

for:

1. R eq u i r em en t s s t o r a g e:

The requirements should be maintained in a secure, managed data

store that is accessible to everyone involved in the requirements enginee ri ng

process.

2. C h a n g e m a n a g em en t :

The process of change management is simplified if active tool

support is available.

3. Tr a cea b i l i t y m a n a g em en t :
Tool support for traceability allows related requirements to be

discovered. Some tools are available which use natural language processi ng

techniques to help discover possible relationships between requirements.

For small systems, it may not be necessary to use specialized requireme nt s

management tools. It may be supported using the facilities available in word

processors, spreadsheets, and PC databases. However, for larger systems, more

specialized tool support is required.

Requirements change management:

Requirements change management should be applied to all propose d

changes to a system’s requirements after the requirements document has been

approved.

Change management is essential because you need to decide if the benefit s

of implementing new requirements are justified by the costs of implementatio n .

The advantage of using a formal process for change management is that

all change proposals are treated consistently and changes to the

requirements document are made in a controlled way.

There are three principal stages to a change management process:

1. Problem analysis and change specification:

➢ The process starts with an identified requirements problem or,

sometimes, with a specific change proposal.

➢ During this stage, the problem or the change proposal is analyzed to

check that it is valid. This analysis is fed back to the change reque stor

who may respond with a more specific requirements change proposal,

or decide to withdraw the request.

2. Change analysis and costing:

➢ The effect of the proposed change is assessed using traceability

information and general knowledge of the system requirements.

➢ The cost of making the change is estimated both in terms of

modifications to the requirements document and, if appropriate, to

the system design and implementation.

➢ Once this analysis is completed, a decision is made whether or not to

proceed with the requirements change.

3. Change implementation:

➢ The requirements document and, where necessary, the system design

and implementation, are modified.

➢ We should organize the requirements document so that we can make

changes to it without extensive rewriting or reorganization.

➢ As with programs, changeability in documents is achieved by

minimizing external references and making the document sections

as modular as possible. Thus, individual sections can be changed and

replaced without affecting other parts of the document.

If a new requirement has to be urgently implemented, there is always

a temptation to change the system and then retrospectively modify

the requirements document.

oOo

UNIT III

DESIGN ENGINEERING

Syllabus

Design Engineering: Design process and design quality, design concepts, the design model.

Creating an architectural design: software architecture, data design, architectural styles and

patterns, architectural design, conceptual model of UML, basic structural modeling, class

diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component

diagrams.

Design Engineering:

Design:

Design is a meaningful engineering representation of something that is to be

built.

It can be traced to a customer’s requirements and at the same time

assessed for quality against a set of predefined criteria for “good” design.

In the software engineering context, design focuses on four major areas

of concern: data, architecture, interfaces, and components.

Software engineers design computer based systems, but the skills required at

each level of design work are different.

➢ At the data and architectural level, design focuses on patterns as

they apply to the application to be built.

➢ At the interface level, human ergonomics (human factors) often

dictate our design approach.

➢ At the component level, a “programming approach” leads us to

effective data and procedural designs.

Why is it important?

Design allows you to model the system or product that is to be built.

This model can be assessed for quality and improved before code is generated,

tests are conducted, and end users become involved in large numbers.

The goal of design is to produce a model or representation that exhibits firmness, commodity,

and delight. To accomplish this, you must practice diversification and then convergence.

Design Engineering:

Design engineering encompasses the set of principles, concepts, and practices that lead to the

development of a high-quality system or product.

Design principles establish an overriding philosophy that guides you in the design work

you must perform.

Design concepts must be understood before the mechanics of design practice are applied.

Design practice itself leads to the creation of various representations of the software that

serve as a guide for the construction activity that follows.

Design Within the Context of Software Engineering:

“The most common miracle of software engineering is the transition from analysis to design

and design to code.”

Once software requirements have been analyzed and modeled, software design is the last

software engineering action within the modeling activity and sets the stage for construction

(code generation and testing).

Each of the elements of the requirements model provides information that is necessary to

create the four design models required for a complete specification of design. The flow of

information during software design is illustrated in figure below.

The requirements model, manifested by scenario-based, class-based, flow- oriented, and

behavioral elements, feed the design task. Using design notation and design methods

discussed in later chapters, design produces a data/class design, an architectural design, an

interface design, and a component design.

➢ The data/class design transforms class models into design class realizations and the

requisite data structures required to implement the software.

➢ Part of class design may occur in conjunction with the design of software architecture.

➢ More detailed class design occurs as each software component is designed.

➢ The architectural design defines the relationship between major structural elements of

the software, the architectural styles and design patterns that can be used to achieve

the requirements defined for the system, and the constraints that affect the way in

which architecture can be implemented.

➢ The interface design describes how the software communicates with systems that

interoperate with it, and with humans who use it.

➢ The component-level design transforms structural elements of the software

architecture into a procedural description of software components. Information

obtained from the class-based models, flow models, and behavioral models serve

as the basis for component design.

oOo

Design Process and Design Quality:

Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software.

Throughout the design process, the quality of the evolving design is assessed with a series

of formal technical reviews or design walkthroughs. McGlaughlin suggests three

characteristics that serve as a guide for the evaluation of a good design:

➢ The design must implement all of the explicit requirements contained in the analysis

model, and it must accommodate all of the implicit requirements desired by the

customer.

➢ The design must be a readable, understandable guide for those who generate code

and for those who test and subsequently support the software.

➢ The design should provide a complete picture of the software, addressing the data,

functional, and behavioural domains from an implementation perspective.

Each of these characteristics is actually a goal of the design process.

Quality Guidelines:

In order to evaluate the quality of a design representation, we must establish technical

criteria for good design.

The following are the quality guidelines:

1. A design should exhibit an architecture that

a) has been created using recognizable architectural styles or patterns,

b) is composed of components that exhibit good design, and

c) can be implemented in an evolutionary fashion, thereby facilitating implementation

and testing.

2. A design should be modular; that is, the software should be logically partitioned into

elements or subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and

components.

4. A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information

obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its

meaning.

These design guidelines are not achieved by chance. They are achieved through the

application of fundamental design principles, systematic methodology, and

thorough review.

Quality Attributes:

Hewlett-Packard developed a set of software quality attributes that has been given the

acronym FURPS—functionality, usability, reliability, performance, and supportability.

The FURPS quality attributes represent a target for all software design:

➢ Functionality is assessed by evaluating the feature set and capabilities of the

program, the generality of the functions that are delivered, and the security of the

overall system.

➢ Usability is assessed by considering human factors, overall aesthetics, consistency,

and documentation.

➢ Reliability is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure (MTTF), the ability to recover

from failure, and the predictability of the program.

➢ Performance is measured by considering processing speed, response time, resource

consumption, throughput, and efficiency.

➢ Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability - these three attributes represent a more common term,

maintainability and in addition, testability, compatibility, configurability (the ability

to organize and control elements of the software configuration), the ease with which

a system can be installed, and the ease with which problems can be localized.

Not every software quality attribute is weighted equally as the software design is

developed.

➢ One application may stress functionality with a special emphasis on security.

➢ Another may demand performance with particular emphasis on processing speed.

➢ A third might focus on reliability.

Regardless of the weighting, it is important to note that these quality

attributes must be considered as design commences, not after the design is

complete and construction has begun.

Design Concepts:

A set of fundamental software design concepts has evolved over the history of software

engineering.

Although the degree of interest in each concept has varied over the years, each has stood

the test of time. Each provides the software designer with a foundation from which

more sophisticated design methods can be applied.

M. A. Jackson once said: “The beginning of wisdom for a [software engineer] is to

recognize the difference between getting a program to work, and getting it right.”

Fundamental software design concepts provide the necessary framework for “getting

it right.”

Following are the important software design concepts that span both traditional and

object-oriented software development.

Abstraction:

Each step in the software process is a refinement in the level of abstraction of the software

solution.

Many levels of abstraction are there.

➢ At the highest level of abstraction, a solution is stated in broad terms using the

language of the problem environment.

➢ At lower levels of abstraction, a more detailed description of the solution is provided.

➢ As we move through different levels of abstraction, we work to create procedural

and data abstractions.

➢ A procedural abstraction is a named sequence of instructions that has a specific and

limited function.

An example of a procedural abstraction would be the word open for a door. Open

implies a long sequence of procedural steps (e.g., walk to the door, reach out and grasp

knob, turn knob and pull door, step away from moving door, etc.).

➢ A data abstraction is a named collection of data that describes a data object.

In the context of the procedural abstraction open, we can define a data abstraction called

door. Like any data object, the data abstraction for door would encompass a set of

attributes that describe the door (e.g., door type, swing direction, opening mechanism,

weight, dimensions).

Architecture:

Software architecture alludes to “the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system”.

In its simplest form, architecture is the structure or organization of program components

(modules), the manner in which these components interact, and the structure of data that

are used by the components.

One goal of software design is to derive an architectural rendering of a system. This

rendering serves as a framework from which more detailed design activities are

conducted. A set of architectural patterns enables a software engineer to reuse design-level

concepts.

The architectural design can be represented using one or more of a number of different

models.

➢ Structural models represent architecture as an organized collection of program

components.

➢ Framework models increase the level of design abstraction by attempting to identify

repeatable architectural design frameworks (patterns) that are encountered in similar

types of applications.

➢ Dynamic models address the behavioral aspects of the program architecture,

indicating how the structure or system configuration may change as a function of

external events.

➢ Process models focus on the design of the business or technical process that the

system must accommodate.

➢ Finally, functional models can be used to represent the functional hierarchy of a

system.

Patterns:

Brad Appleton defines a design pattern in the following manner: “a pattern is a named

nugget of inside which conveys that essence of a proven solution to a recurring problem

within a certain context amidst competing concerns.”

A design pattern describes a design structure that solves a particular design within a

specific context and amid “forces” that may have an impact on the manner in which the

pattern is applied and used.

The intent of each design pattern is to provide a description that enables a designer to

determine

➢ Whether the pattern is capable to the current work,

➢ Whether the pattern can be reused,

➢ Whether the pattern can serve as a guide for developing a similar, but functionally

or structurally different pattern.

Modularity:

Software architecture and design patterns embody modularity; software is divided into

separately named and addressable components, sometimes called modules that are

integrated to satisfy problem requirements.

It has been stated that “modularity is the single attribute of software that allows a program

to be intellectually manageable”. Monolithic software cannot be easily grasped by a

software engineer. The number of control paths, span of reference, number of variables,

and overall complexity would make understanding close to impossible.

The “divide and conquer” strategy- it’s easier to solve a complex problem when you break

it into manageable pieces. This has important implications with regard to modularity and

software. If we subdivide software indefinitely, the effort required to develop it will

become negligibly small. The effort to develop an individual software module does

decrease as the total number of modules increases. Given the same set of requirements,

more modules means smaller individual size. However, as the number of modules grows,

the effort associated with integrating the modules also grow.

Under modularity or over modularity should be avoided. We modularize a design so that

development can be more easily planned; software increment can be defined and

delivered; changes can be more easily accommodated; testing and debugging can be

conducted more efficiently, and long-term maintenance can be conducted without serious

side effects.

Information Hiding:

The principle of information hiding suggests that modules be “characterized by design

decision that hides from all others.”

Modules should be specified and designed so that information contained within a module

is inaccessible to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of independent

modules that communicate with one another only that information necessary to achieve

software function. Abstraction helps to define the procedural entities that make up the

software. Hiding defines and enforces access constraints to both procedural detail within a

module and local data structure used by module.

The use of information hiding as a design criterion for modular systems provides the

greatest benefits when modifications are required during testing and later, during

software maintenance. Because most data and procedure are hidden from other parts of

the software, inadvertent errors introduced during modification are less likely to

propagate to other locations within software.

Functional Independence:

The concept of functional independence is a direct outgrowth of modularity and the

concepts of abstraction and information hiding.

Functional independence is achieved by developing modules with “single minded”

function and an “aversion” to excessive interaction with other modules. Stated another

way, we want to design software so that each module addresses a specific sub function of

requirements and has a simple interface when viewed from other parts of the program

structure.

Software with effective modularity, that is, independent modules, is easier to develop

because function may be compartmentalized and interfaces are simplified. Independent

sign or code modifications are limited, error propagation is reduced, and reusable

modules are possible. To summarize, functional independence is a key to good design,

and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

➢ Cohesion is an indication of the relative functional strength of a module.

➢ Coupling is an indication of the relative interdependence among modules. Cohesion

is a natural extension of the information hiding.

A cohesive module performs a single task, requiring little interaction with other

components in other parts of a program. Stated simply, a cohesive module should do just

one thing.

Coupling is an indication of interconnection among modules in a software structure.

Coupling depends on the interface complexity between modules, the point at which entry

or reference is made to a module, and what data pass across the interface. In software

design, we strive for lowest possible coupling. Simple connectivity among modules results

in software that is easier to understand and less prone to a “ripple effect”, caused when

errors occur at one location and propagates throughout a system.

Refinement:

Stepwise refinement is a top- down design strategy originally proposed by Niklaus Wirth.

A program is developed by successively refining levels of procedural detail. A hierarchy is

developed by decomposing a macroscopic statement of function in a step wise fashion

until programming language statements are reached.

Refinement is actually a process of elaboration. We begin with a statement of function that

is defined at a high level of abstraction. That is, the statement describes function or

information conceptually but provides no information about the internal workings of the

function or the internal structure of the data. Refinement causes the designer to elaborate

on the original statement, providing more and more detail as each successive refinement

occurs.

Abstraction and refinement are complementary concepts. Abstraction enables a

designer to specify procedure and data and yet suppress low-level details. Refinement

helps the designer to reveal low-level details as design progresses. Both concepts aid the

designer in creating a complete design model as the design evolves.

Refactoring :

Refactoring is a reorganization technique that simplifies the design of a component

without changing its function or behavior.

Fowler defines refactoring in the following manner: “refactoring is the process of changing

a software system in such a way that it does not alter the external behavior of the

code(design) yet improves its internal structure.”

When software is refactored, the existing design is examined for redundancy, unused

design elements, inefficient or unnecessary algorithms, poorly constructed or

inappropriate data structures, or any other design failure that can be corrected to

yield a better design. The designer may decide that the component should be refactored

into 3 separate components, each exhibiting high cohesion. The result will be software

that is easier to integrate, easier to test, and easier to maintain.

Design classes:

The software team must define a set of design classes that

➢ Refine the analysis classes by providing design detail that will enable the classes to

be implemented, and

➢ Create a new set of design classes that implement a software infrastructure to support

the design solution.

Five different types of design classes, each representing a different layer of the design

architecture are suggested.

User interface classes: define all abstractions that are necessary for human computer

interaction. In many cases, HCL occurs within the context of a metaphor and the

design classes for the interface may be visual representations of the elements of the

metaphor.

Business domain classes: are often refinements of the analysis classes defined earlier.

The classes identify the attributes and services that are required to implement some

element of the business domain.

Process classes implement lower – level business abstractions required to fully manage

the business domain classes.

Persistent classes represent data stores that will persist beyond the execution of the

software.

System classes implement software management and control functions that enable the

system to operate and communicate within its computing environment and with the

outside world.

As the design model evolves, the software team must develop a complete set of attributes

and operations for each design class. The level of abstraction is reduced as each analysis

class is transformed into a design representation.

Arlow and Neustadt suggest that each design class be reviewed to ensure that it is “well -

formed.” They define four characteristics of a well- formed design class:

➢ Complete and sufficient: A design class should be the complete encapsulation of all

attributes and methods that can reasonably be expected to exist for the class.

Sufficiency ensures that the design class contains only those methods that are

sufficient to achieve the intent of the class, no more and no less.

➢ Primitiveness: Methods associated with a design class should be focused on

accomplishing one service for the class. Once the service has been implemented with

a method, the class should not provide another way to accomplish the same thing.

➢ High cohesion: A cohesive design class has a small, focused set of responsibilities

and single- mindedly applies attributes and methods to implement those

responsibilities.

➢ Low coupling: Within the design model, it is necessary for design classes to

collaborate with one another. However, collaboration should be kept to an acceptable

minimum. If a design model is highly coupled the system is difficult to

implement, to test, and to maintain over time. In general, design classes within a

subsystem should have only limited knowledge of classes in other subsystems. This

restriction, called the law of Demeter, suggests that a method should only sent

messages to methods in neighboring classes.

The Design Model:
The design model can be viewed in two different dimensions.

➢ The process dimension indicates the evolution of the design model as design tasks

are executed as a part of the software process.

➢ The abstraction dimension represents the level of detail as each element of the

analysis model is transformed into a design equivalent and then refined iteratively.

The elements of the design model use many of the same UML diagrams that were used in

the analysis model. The difference is that these diagrams are refined and elaborated as a

path of design; more implementation- specific detail is provided, and architectural structure

and style, components that reside within the architecture, and the interface between the

components and with the outside world are all emphasized.

It is important to mention however, that model elements noted along the horizontal axis are

not always developed in a sequential fashion. In most cases preliminary architectural design

sets the stage and is followed by interface design and component-level design, which often

occur in parallel. The deployment model us usually delayed until the design has been fully

developed.

Data design elements:

Data design sometimes referred to as data architecting creates a model of data and/or

information that is represented at a high level of abstraction. This data model is then

refined into progressively more implementation-specific representations that can be

processed by the computer-based system.

The structure of data has always been an important part of software design.

➢ At the program component level, the design of data structures and the associated

algorithms required to manipulate them is essential to the criterion of high-quality

applications.

➢ At the application level, the translation of a data model into a database is pivotal to

achieving the business objectives of a system.

➢ At the business level, the collection of information stored in disparate databases and

reorganized into a “data warehouse” enables data mining or knowledge discovery

that can have an impact on the success of the business itself.

Architectural design elements:

The architectural design for software is the equivalent to the floor plan of a house.

The architectural model is derived from three sources.

➢ Information about the application domain for the software to be built.

➢ Specific analysis model elements such as data flow diagrams or analysis classes, their

relationships and collaborations for the problem at hand, and

➢ The availability of architectural patterns

Interface design elements:

The interface design for software is the equivalent to a set of detailed drawings for the

doors, windows, and external utilities of a house.

The interface design elements for software tell how information flows into and out of the

system and how it is communicated among the components defined as part of the

architecture.

There are 3 important elements of interface design:

➢ The user interface (UI);

➢ External interfaces to other systems, devices, networks, or other produces or

consumers of information; and

➢ Internal interfaces between various design components.

These interface design elements allow the software to communicated externally and

enable internal communication and collaboration among the components that

populate the software architecture.

UI design is a major software engineering action.

The design of a UI incorporates aesthetic elements (e.g., layout, color, graphics,

interaction mechanisms), ergonomic elements (e.g., information layout and

placement, metaphors, UI navigation), and technical elements (e.g., UI patterns,

reusable components). In general, the UI is a unique subsystem within the overall

application architecture.

The design of external interfaces requires definitive information about the entity to

which information is sent or received. The design of external interfaces should

incorporate error checking and appropriated security features.

UML defines an interface in the following manner:” an interface is a specifier for the

externally- visible operations of a class, component, or other classifier without

specification of internal structure.”

COMPONENT-LEVEL DESIGN ELEMENTS

The component-level design for software is equivalent to a set of detailed drawings.

The component-level design for software fully describes the internal detail of each

software component. To accomplish this, the component-level design defines data

structures for all local data objects and algorithmic detail for all processing that

occurs within a component and an interface that allows access to all component

operations.

Deployment-level design elements:

Deployment-level design elements indicated how software functionality and

subsystems will be allocated within the physical computing environment that will

support the software

Creating an Architectural Design

The architectural design is the preliminary blueprint from which software is

constructed.

Software Architecture :

Today, effective software architecture and its explicit representation and

design have become dominant themes in software engineering.

➢ What is Architecture?

“The architecture of a system is a comprehensive framework that describes its

form and structure - its components and how they fit together.”

In simple words, architecture captures system structure in terms of

components and how they interact.

Architecture is defined as the fundamental organization of a system,

embodied in its components, their relationships to each other and the

environment, and the principles governing its design and evolution.

➢ What is Software Architecture?

The software architecture of a program or computing system is the

structure or structures of the system, which comprise software components, the

externally visible properties of those components, and the relationships among

them.

The architecture is not the operational software. Rather, it is a

representation that enables you to

1. Analyze the effectiveness of the design in meeting its stated requirements,

2. Consider architectural alternatives at a stage when making design

changes is still relatively easy, and

3. Reduce the risks associated with the construction of the software.

➢ Why Is Architecture Important?

There are three key reasons stating that software architecture is important:

1. Representations of software architecture are an enabler for

communication between all parties (stakeholders) interested in the

development of a computer-based system.

2. The architecture highlights early design decisions that will have a

profound impact on all software engineering work that follows and, as

important, on the ultimate success of the system as an operational entity.

3. Architecture “constitutes a relatively small, intellectually graspable model

of how the system is structured and how its components work together”.

Design of Software Architecture :

The design of software architecture considers two levels of the design

pyramid:

1. Data Design

2. Architectural Design

Data design enables us to represent the data components of the

architecture in conventional systems and class definitions (encapsulating

attributes and operations) in object-oriented systems.

Architectural design focuses on the representation of the structure of

software components, their properties, and the interactions.

➢ Data Design :

The data design action translates data objects defined as a part of the

analysis model into data structures at the software component level and

whenever necessary, a database architecture at the application level.

➢ Data Design at the Architectural Level :

Today, businesses have dozens of databases serving many applications

encompassing hundreds of gigabytes of data. The Challenge is to extract useful

information from this data environment, particularly when the information

desired is cross-functional (e.g., information that can be obtained only if specific

marketing data are cross-correlated with product engineering data).

To solve this challenge, the business IT community has developed data

mining techniques, also called knowledge discovery in databases (KDD), that

navigate through existing databases in an attempt to extract appropriate

business- level information. However, the existence of multiple databases, their

different structures, the degree of detail contained with the databases, and many

other factors make data mining difficult within an existing database

environment.

An alternative solution, called a data warehouse, adds an additional layer

to the data architecture. A data warehouse is a separate data environment that is

not directly integrated with day-to-day applications but encompasses all data

used by a business. In a sense, a data warehouse is a large, independent database

that has access to the data that are stored in databases that serve the set of

applications required by a business.

➢ Data Design at the Component Level :

Data design at the component level focuses on the representation of data

structures that are directly accessed by one or more software components.

Wasserman has proposed a set of principles that may be used to specify and

design such data structures. Following are the set of principles for data

specification :

1. The systematic analysis principles applied to function and behavior

should also be applied to data. Representations of dat flow and content

should also be developed and reviewed. Data objects should be identified,

alternative data organizations should be considered, and the impact of data

modeling on software design should be evaluated.

2. All data structues and the operations to be performed on each should

be identified. The design of an efficient data structure must take the

operations to be performed on the data structure into account. The

attributes and operations encapsulated within a class satisfy this principle.

3. A mechanism for defining the content of each data object should be

established and used to define both data and the operations applied

to it. Class diagrams define the data items(attributes) contained within a

class and the processing(operations) that are applied to these data items.

4. Low-level data design decisions should be deferred until late in the

design process. A process of stepwise refinement may be used for the

design of data. That is, overall data organization may be defined during

requirements analysis, refined during data design work, and specified in detail

during component-level design.

The represenattion of a data structure shold be known only to those modules

that must make direct use of the data contained within the structure. The

concept of information hiding and the related concept of coupling provide

important insight into the quality of a software design.

5. A library of useful data structures and the operations that may be

applied to them should be developed. A class library achieves this.

6. A software design and programming language should support the

specification and realization of abstract data types. The implementation of

sophisticated data structure can be made exceedingly difficult if no means for

direct specification of the structure exists in the programming language

chosen for implementation.

These priciples form a basis for a component-level data design approach that

can be integrated into both the analysis and design activities.

Architecture Styles and Patterns:

The architectural style is also a template for construction. The software

that is built for computer-based systems also exhibits one of many architectural

styles. Each style describes a system category that encompasses

1. A set of computers that perform a function required by a system.

2. A set of connectors that enable “communication, coordination,

and cooperation” among components

3. Constraints that define how components can be integrated to form the
system

4. Semantic models that enable a designer to understand the overall

properties of a system by analyzing the known properties of its

constituent parts.

An architectural style is a transformation that is imposed on the design of

an entire system. The intent is to establish a structure for all components of the

system. In the case where an existing architecture is to be reengineered the

imposition of an architectural style will result in fundamental changes to the

structure of the software including a reassignment of the functionality of

components.

An architectural pattern, like an architectural style, imposes a

transformation on the design of an architecture. However, a pattern differs from

a style in a number of fundamental ways:

(1) the scope of a pattern is less broad, focusing on one aspect of the

architecture rather than the architecture in its entirety;

(2) a pattern imposes a rule on the architecture, describing how the

software will handle some aspect of its functionality at the infrastructure level

(e.g., concurrency)

(3) architectural patterns tend to address specific behavioral issues within

the context of the architecture (e.g., how real-time applications handle

synchronization or interrupts).

Patterns can be used in conjunction with an architectural style to shape the

overall structure of a system.

A Brief Taxonomy of Architectural Styles:

➢ Data-centered architecture:

A data store (e.g., a file or database) resides at the center of this

architecture and is accessed frequently by other components that update, add,

delete, or otherwise modify data within the store. Following figure illustrates a

typical data- centered style.

Client software accesses a central repository. In some cases the data

repository is passive. That is, client software accesses the data independent of

any changes to the data or the actions of other client software. A variation

on this approach transforms the repository into a “blackboard” that sends

notifications to client software when data of interest to the client changes.

Data-centered architectures promote integrability.

➢ Data-flow architecture:

This architecture is applied when input data are to be transformed through a

series of computational or manipulative components into output data. A pipe-

and-filter pattern has a set of components, called filters, connected by pipes that

transmit data from one component to the next. Each filter works

independently of those components upstream and downstream, is designed to

expect data input of a certain form, and produces data output (to the next

filter) of a specified form. However, the filter does not require knowledge of

the workings of its neighboring filters. If the data flow degenerates into a single

line of transforms, it is termed batch sequential. This structure accepts a

batch of data and then applies a series of sequential components (filters) to

transform it.

➢ Call and return architecture:

This architectural style enables you to achieve a program structure that is

relatively easy to modify and scale. A number of substyles exist within this

category:

1. Main program/subp rogram architecture: This classic program structure

decomposes function into a control hierarchy where a “main” program

invokes a number of program components that in turn may invoke still other

components. Following figure illustrates architecture of this type.

2. Remote procedure call architecture: The components of a main

program/subprogram architecture are distributed across multiple

computers on a network.

➢ Object-oriented architecture:

The components of a system encapsulate data and the operations that

must be applied to manipulate the data. Communication and coordination

between components are accomplished via message passing.

➢ Layered architecture:
The basic structure of a layered architecture is illustrated in the following figure

A number of different layers are defined, each accomplishing operations

that progressively become closer to the machine instruction set. At the outer

layer, components service user interface operations. At the inner layer,

components perform operating system interfacing. Intermediate layers provide

utility services and application software functions.

Architectural Patterns:

A software architecture may have a number of architectural patterns

that address issues such as concurrency, persistence and distribution.

➢ Concurrency: Many applications must handle multiple tasks in a manner

that simulates parallelism.

For example:

✓ operating system process management pattern

✓ task scheduler pattern

➢ Persistence: Data persists if it survives past the execution of the process

that created it.

For example:

✓ a database management system pattern that applies the storage

and retrieval capability of a DBMS to the application architecture

✓ an application level persistence pattern that builds

persistence features into the application architecture

➢ Distribution: The manner in which systems or components within

systems communicate with one another in a distributed environment

For example: A broker acts as a ‘middle-man’ between the client

component and a server component. CORBA is an example of a broker

architecture.

Organization and Refinement:

Because the design process often leaves you with a number of architectural

alternatives, it is important to establish a set of design criteria that can be used

to assess an architectural design that is derived. The following questions provide

insight into an architectural style:

Control:

✓ How is control managed within the architecture?

✓ Does a distinct control hierarchy exist, and if so, what is the

role of components within this control hierarchy?

✓ How do components transfer control within the system?

✓ How is control shared among components?

✓ What is the control topology (i.e., the geometric form that the control
takes)?

✓ Is control synchronized or do components operate asynchronously?

Data:

✓ How are data communicated between components?

✓ Is the flow of data continuous, or are data objects passed to the

system sporadically?

✓ What is the mode of data transfer (i.e., are data passed from one

component to another or are data available globally to be shared among

system components)?

✓ Do data components (e.g., a blackboard or repository) exist, and if so, what

is their role?

✓ How do functional components interact with data components?

✓ Are data components passive or active (i.e., does the data component actively

interact with other components in the system)?

✓ How do data and control interact within the system?

These questions provide the designer with an early assessment of design

quality and lay the foundation for more detailed analysis of the architecture.

Architectural Design:

As architectural design begins, the software to be developed must be put into

context – that is, the design should define the external entities(other systesms,

devices, people) that the software interacts with and the nature of the interaction.

This information can generally be acquired from the analysis model and all other

information gathered during requirements engineering.

Once context is modeled and all external software interfaces have been

described, the designer specifies the structure of the system by defining and

refining software components that implement the architecture.

Thies process continues iteratively until a complete architectural structure has

been derived.

Representing the system in context:

At the architectural design level, a software architect uses an architectural

context diagram(ACO) to model the manner in which software interacts with

entities external to its boundaries.

The generic structure of the architectural context diagram is illustrated in figure.

Systems that interacts with the target system are represented
as:

Superordinate systems: These are the systems which consider the (use the) target

system inorder to complete its higher valued activities.

Subordinate systems: These are the systems which funtion along with the

target system. Hence, supporting the target system in successfully completing

its processing.

Peer systems or Peers: These are the systems which directly interact with the

target system same as client-server interaction.

Actors: These are specimens or any entities possesing a definite set of roles and

interacting with the system. During this interaction an actor can either provide

or accept information from the system.

Each of these external entities communicates with the target system

through an interface(the small shaded rectangles)

Following is the ACD(Architectural Context Diagram) depicting the safe

home security systems.

Indicator – An abstraction that represents all mechanims for indicating that an

alarm condition is occuring.(e.g. alarm siren, flash lights, bell).

Controller- An abstraction that depicts the mechanism that allows the arming or

disarming of a node. If controller reside on a network, they have the ability to

communicate with one another.

Each of these archetypes is depicted using UML notation as shown in figure:

As archetypes represents only abstractions. Hence, they can be further

refined into components just by refining these abstractions. For example,

detector might be refined into a class hierarchy of sensors.

Refining the Architecture into components:

As the software architecture is refined into components the structure of

the system begins to emerge, for this purpose we initially consider the classes

which were described as part of the analysis mode. These analysis classes forms

the major entities of application domain. Hence, the application domain is one

source for the derivation and refinement of components. Another source is the

infrastructure domain. The architecture must accommodate components but

have no business connection to the application domain.

The interfaces depicted in the architecture context diagram imply one or

more specialized components that process the data that fow across the interface.

In some case graphical user interface, a complete subsystem architecture with

many components must be designed.

➢ Components of the software architecture are dervied from three

sources:

o The application domain

o The infrastructure domain

o The interface domain

For safe home security system, we might define the set of top-level components as

follows:

External Communication Management- Coordinates communication of the

security function with external entities, for example, internet-based systesm,

external alarm notification.

Control Panel Processing-manages all control panel functionality.

Detector Management- Coordinates access to all detectors attached to the system

Alarm Processing- verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and then

positioned within the overall SafeHome architecture. Design classes(with

appropriate attributes and operations) would be defined for each. It is important to

note, how-ever, that the design details of all attributes and operations would not be

specified until component-level design.

The overall architectural structure is illustrated in the following figure.

Transactions are acquired by external communication management as

they move in from components that process the SafeHome GUI and the internet

interface. This information is managed by a SafeHome executive componet that

selects the appropriate product function. The control panel processing

component interacts with homeowner to arm/disarm the security fucntion.

The dector management component polls sensors to detect an alaram condition,

and ahte alarm processing component produces output when alarm is detected.

Describing Instantiations of the System:

The architectural design that has been modeled to this point is still relatively high

level. The context of the system has been represented, archetypes that indicate the

important abstractions within the problem domain have been defined, the overall

structure of the system is apparent, and the major software components have been

identified. However, further refinement (recall that all design is iterative) is still

necessary.

To accomplish this, an actual instantiation of the architecture is

developed. By this I mean that the architecture is applied to a specific problem

with the intent of demonstrating that the structure and components are

appropriate.

The following figure illustrates an instantiation of the SafeHome

architecture for the security system. Components shown in overall architecture

are elaborated to show additional detail. For example, the detector management

component interacts with a scheduler infra-structure component that

implements polling of each sensor object used by the security system.

Assessing Alternative Architectural Designs:

At its best, design results in a number of architectural alternatives that are

each assessed to determine which is the most appropriate for the problem to be

solved. In the sections that follow, we consider the assessment of alternatives

architectural designs.

➢ An Architecture Trade-Off Analysis Method:

The Software Engineering Institute (SEI) has developed an architecture trade-off

analysis method (ATAM) that establishes an iterative evaluation process for

software architectures. The design analysis activities that follow are performed

iteratively:

1. Collect scenarios . A set of use cases is developed to represent the

system from the user’s point of view.

2. Elicit requirements, constraints, and environment description. This

information is determined as part of requirements engineering and is

used to be certain that all stakeholder concerns have been addressed.

3. Describe the architectural styles/patterns that have been

chosen to address the scenarios and requirements. The

architectural style(s) should be described using one of the following

architectural views:

➢ Module view for analysis of work assignments with components

and the degree to which information hiding has been achieved.
➢ Process view for analysis of system performance.
➢ Data flow view for analysis of the degree to which the

architecture meets functional requirements.
4. Evaluate quality attributes by considering each attribute in

isolation. The number of quality attributes chosen for analysis is a

function of the time available for review and the degree to which quality

attributes are relevant to the sys-tem at hand. Quality attributes for

architectural design assessment include reliability, performance, security,

maintainability, flexibility, testability, portability, reusability, and

interoperability.

5. Identify the sensitivity of quality attributes to various architectural

attributes for a specific architectural style. This can be

accomplished by making small changes in the architecture and

determining how sensitive a quality attribute, say performance, is to

the change. Any attributes that are significantly affected by variation in

the architecture are termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the

sensitivity analysis conducted in step 5. The SEI describes this

approach in the following manner.

Once the architectural sensitivity points have been determined,

finding trade-off points is simply the identification of architectural

elements to

which multiple attributes are sensitive. For example, the performance of a

client-server architecture might be highly sensitive to the number of servers

(performance increases, within some range, by increasing the number of

servers). The number of servers, then, is a trade-off point with respect to

this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps

5 and 6, some architecture alternatives may be eliminated, one or more of the

remaining architectures may be modified and represented in more detail and

then the ATAM Steps are reapplied.

➢ Architectural Complexity:

A useful technique for assessing the overall complexity of a proposed

architecture is to consider dependencies between components within the

architecture. These dependencies are driven by information/control flow within the

system. Zhao suggests three types of dependencies:

Sharing dependencies represent dependence relationships among

consumers who use the same resource or producers who produce for the same

consumers. For example, for two components u and v, if u and v refer to the same

global data, then there exists a shared dependence relationship between u and v.

Flow Dependencies represent dependence relationships between producers

and consumers of resource. For example for two components u and v, if u must

complete before controls flows into v or if u communicates with v by parameters,

then there exists a flow dependence relationship between u and v.

Constrained dependencies represent constraints on the relative flow of

control among a set of activities. For example, for two components u and v, if u

and v cannot execute at the same time then there exists a constrained dependence

relationship between u and v.

The sharing and flow dependencies noted by Zhao are similar to the concept of
coupling. Coupling is an important design concept that is applicable at the
architectural level and at the component level.

➢ Architectural Description Languages:

Architectural description language (ADL) provides a semantics and

syntax for describing software architecture. ADL should provide the designer

with the ability to decompose architectural components, compose individual

components into larger architectural blocks, and represent interfaces

(connection mechanisms) between components.

Once descriptive, language-based techniques for architectural design have

been established, it is more likely that effective assessment methods for

architectures will be established as the design evolves.

	8b2f6a5ac51d598e7f5a8ed00325185acdc198a9d1ad470da4d6e3c7aec6b573.pdf
	8b2f6a5ac51d598e7f5a8ed00325185acdc198a9d1ad470da4d6e3c7aec6b573.pdf
	8b2f6a5ac51d598e7f5a8ed00325185acdc198a9d1ad470da4d6e3c7aec6b573.pdf

