
MLR Institute ofTechnology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 UNIT –I CLASSNOTES

What is algorithm?

An algorithm is a procedure or step-by-step instruction for solving a problem. They form the

foundation of writing a program.

For writing any programs, the following has to be known:

• Input
• Tasks to be preformed
• Output expected

Write an algorithm to add two numbers and display the result.

Input –Take two numbers

Processing – adding of two numbers

Output – display result

Algorithm

Step-1 Start

Step-2 Input first numbers say A

Step-3 Input second number say B

Step-4 SUM = A + B

Faculty Name : N.SANDHYA RANI

Subject : PPS

Topic : Problem Solving and algorithmic

thinking & introduction to c language

Step-5 Display SUM

Step-6 Stop

Algorithm

Properties of an Algorithm

Not all procedures can be called an algorithm. An algorithm should have the below

mentioned characteristics −

• Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (or

phases), and their input/outputs should be clear and must lead to only one meaning.

• Input − An algorithm should have 0 or more well defined inputs.

• Output − An algorithm should have 1 or more well defined outputs, and should

match the desired output.

• Finiteness − Algorithms must terminate after a finite number of steps.

• Feasibility − Should be feasible with the available resources.

• Independent − An algorithm should have step-by-step directions which should be

independent of any programming code.

Flowchart

Definition:

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also

be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving

a task.

Common Symbols used in flowchart

ANSI/ISO

Shape
Name Description

Flowline (Arrowhead)

Shows the process's order of operation. A line coming

from one symbol and pointing at

another. Arrowheads are added if the flow is not the

standard top-to-bottom, left-to right

Terminal

Indicates the beginning and ending of a program or

sub-process. Represented as a stadium, oval or

rounded (fillet) rectangle. They usually contain the

word "Start" or "End", or another phrase signaling

the start or end of a process, such as "submit inquiry"

or "receive product".

Process
Represents a set of operations that changes value,

form, or location of data. Represented as a rectangle.

Decision

Shows a conditional operation that determines which

one of the two paths the program will take. The

operation is commonly a yes/no question or

true/false test. Represented as a diamond (rhombus).

Input/Output

Indicates the process of inputting and outputting

data as in entering data or displaying results.

Represented as a rhomboid.

https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Workflow
https://en.wikipedia.org/wiki/Process
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Stadium_(geometry)
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Rhombus
https://en.wikipedia.org/wiki/Rhomboid
https://en.wikipedia.org/wiki/File:Flowchart_Line.svg
https://en.wikipedia.org/wiki/File:Flowchart_Terminal.svg
https://en.wikipedia.org/wiki/File:Flowchart_Process.svg
https://en.wikipedia.org/wiki/File:Flowchart_Decision.svg
https://en.wikipedia.org/wiki/File:Flowchart_IO.svg

Annotation (Comment)

Indicating additional information about a step in the

program. Represented as an open rectangle with a

dashed or solid line connecting it to the

corresponding symbol in the flowchart.

Predefined Process

Shows named process which is defined elsewhere.

Represented as a rectangle with double-struck

vertical edges.

On-page Connector

Pairs of labeled connectors replace long or confusing

lines on a flowchart page. Represented by a small

circle with a letter inside.

Off-page Connector

A labeled connector for use when the target is on

another page. Represented as a home plate-

shaped pentagon.

https://en.wikipedia.org/wiki/Baseball_field#Home_plate
https://en.wikipedia.org/wiki/Pentagon
https://en.wikipedia.org/wiki/File:Flowchart_Annotation.svg
https://en.wikipedia.org/wiki/File:Flowchart_Predefined_Process.svg
https://en.wikipedia.org/wiki/File:Flowchart_Connector.svg
https://en.wikipedia.org/wiki/File:Off_page_connector.png

Example 1: Calculate sum of two number.

Flowgorithm

Introduction

Flowgorithm is a graphical authoring tool which allows users to write and execute programs

using flow charts.

Flowgorithm is a beginner-friendly programming language in which a user would have to create

a flowchart for carrying forward a task, which means in a programming language you would have

to code it thoroughly to create and start a task.

Graphical Shapes of Flowgorithm

 Flowgorithm combines the classic flowchart symbols
 Flowgorithm supports a wide-variable of color schemes
 The application comes with a selection of built-in schemes.

Examples of Flowgorithm

Example 1: Simple example

Example 2: Flowgorithm of a number which is greater or less than zero

Example 3: Flowagorithm of swapping of two numbers

Constituents of algorithms – (Sequence, Selection and Repetition)

• The algorithm and flowchart, classification to the three types of control structures.
 They are:

 1. Sequence

 2. Branching (Selection)

 3. Loop (Repetition /iteration)

• These are three basic building blocks (constructs) to use when designing algorithms.
• These three control structures are sufficient for all purposes

SEQUENCE:-

• The sequence is exemplified by sequence of statements place one after the other – the one

above or before another gets executed first. In flowcharts, sequence of statements is usually

contained in the rectangular process box.

EX: FIND THE AREA OF CIRCLE

Problem 1: Find the area of a Circle of radius r.

 Inputs to the algorithm: Radius r of the Circle.

 Task :calculate radius of circle

 Expected output: Area of the Circle

Algorithm:

• Step1:Start

• Step 2: Read\input the Radius r of the Circle

• Step 3: Area PI*r*r
// calculation of area

• Step 4: Print Area

• Step 5:Stop

Selection:-

• When designing algorithms, there are many steps where decisions must be made.

• Selection is a decision or question.

• At some point in an algorithm there may need to be a question because the algorithm has

reached a step where one or more options are available.

• Depending on the answer given, the algorithm will follow certain steps and ignore others.

• The branch refers to a binary decision based on some condition.

• If the condition is true, one of the two branches is explored;

• if the condition is false, the other alternative is taken.

• This is usually represented by the ‘if-then’ construct in pseudo-codes and programs.

• In flowcharts, this is represented by the diamond-shaped decision box.

• This structure is also known as the Selection/Branching structure.

• Problem1: write algorithm to find the greater number between two numbers

• Inputs to the algorithm: First num1. Second num2.

• Task: find greatest of two numbers

• Expected output: print the greatest number.

Algorithm:

Step1: Start

Step2: Read/input A and B

Step3: if A greater than B then

 display ”A is greatest”

Step4: otherwise

 display “B is greatest”

Step6: End

REPETITION:-

When designing algorithms, there may be some steps that need repeating. This is known as

iteration and can be displayed with algorithms and flowcharts.

Iteration in programming means repeating steps, or instructions, over and over again. This is

often called a ‘loop’.

Algorithms consist of instructions that are carried out (performed) one after another.

Sometimes an algorithm needs to repeat certain steps until told to stop or until a

particular condition has been met.

Iteration is the process of repeating steps.

The loop allows a statement or a sequence of statements to be repeatedly executed based on

some loop condition.

It is represented by the ‘while’ and ‘for’ constructs in most programming languages.

In the flowcharts, a back arrow hints the presence of a loop.

A trip around the loop is known as iteration.

You must ensure that the condition for the termination of the looping must be satisfied after

some finite number of iterations, otherwise it ends up as an infinite loop, a common mistake

made by inexperienced programmers.

The loop is also known as the repetition structure.

Problem 1: A algorithm to find sum of individual digits of a given number

• Inputs to the algorithm: number
• Task: calculate sum of individual digits
• Expected output: print result

Algorithm:

Step 1:Start

Step 2: input num

Step 3: assign sum=0

Step 4:Repeat the steps a to c until the condition n>0 is false

• step a:rem=n%10

• step b:sum=sum + rem

• step c:n=n/10

Step 5:print sum

Step 6:stop

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Basic structure of C programs:
C is a structured programming language. Every c program and its statements must be in a

particular structure. Every c program has the following general structure...

Line 1: Comments - They are ignored by the compiler
This section is used to provide small description of the program. The comment lines are simply
ignored by the compiler, that means they are not executed. In C, there are two types of
comments.

1.Single Line Comments: Single line comment begins with // symbol. We can write any
number of single line comments.
2.Multiple Lines Comments: Multiple lines comment begins with /* symbol and ends
with */. We can write any number of multiple lines comments in a program.

In a C program, the comment lines are optional. Based on the requirement, we write the
comments. All the comment lines in a C program just provide the guidelines to understand the
program and its code.

Line 2: Preprocessing Commands
Pre-processing commands are used to include header files and to define constants. We use
#include statement to include header file into our program. We use #define statement to define a
constant. The pre-processing statements are used according to the requirment. If we don't need
any header file, then no need to write #include statement. If we don't need any constant, then no
need to write #define statement.

Unit No :2
Lecture No :L17
Book Reference:T1

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Introduction to C language:
Structure of C programs

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Line 3: Global Declaration
Global declaration is used to define the global variables, which are common for all the functions
after its declaration. We also use the global declaration to declare functions. This global
declaration is used based on the requirement.

Line 4: int main()
Every C program must write this statement. This statement (main) specifies the starting point of
the C program execution. Here, main is a user defined method which tells the compiler that this
is the starting point of the program execution. Here, int is a datatype of a value that is going to
return to the Operating System after completing the main method execution. If we don't want to
return any value, we can use it as void.

Line 5: Open Brase ({)
The open brase indicates the begining of the block which belongs to the main method. In C
program, every block begins with '{' symbol.

Line 6: Local Declaration
In this section, we declare the variables and functions that are local to the function or block in
which they are declared. The variables which are declared in this section are valid only within
the function or block in which they are declared.

Line 7: Executable statements
In this section, we write the statements which perform tasks like reading data, displaying result,
calculations etc., All the statements in this section are written according to the requirment.

Line 9: Closing Brase (})
The close brase indicates the end of the block which belongs to the main method. In C program
every block ends with '}' symbol.

Line 10, 11, 12, ...: Userdefined function()
This is the place where we implement the userdefined functions. The userdefined function
implementation can also be performed before the main method. In this case, the user defined
function need not to be declared. Directly it can be implemented, but it must be before the main
method. In a program, we can define as many userdefined functions as we want. Every user
defined function needs a function call to execute its statements.

General rules for any C program
1.Every executable statement must end with semicolon symbol (;).
2.Every C program must contain exactly one main method (Starting point of the program
execution).
3.All the system defined words (keywords) must be used in lowercase letters.
4.Keywords can not be used as user defined names(identifiers).

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

5.For every open brase ({), there must be respective closing brase (}).
6.Every variable must be declared before it is used.

Process of compiling and running a C program:
Generally, the programs created using programming languages like C, C++, Java etc., are written
using high level language like English. But, computer cannot understand the high level language.
It can understand only low level language. So, the program written in high level language needs
to be converted into low level language to make it understandable for the computer. This
conversion is performed using either Interpreter or Compiler.

Popular programming languages like C, C++, Java etc., use compiler to convert high level
language instructions into low level language instructions. Compiler is a program that converts
high level language instructions into low level language instructions. Generally, compiler
performs two things, first it verifies the program errors, if errors are found, it returns list of errors
otherwise it converts the complete code into low level language.

To create and execute C programs in Windows Operating System, we need to install Turbo C
software. We use the following steps to create and execute C programs in Windows OS…

Step 1: Creating Source Code
Source code is a file with C programming instructions in high level language. To create source
code, we use any text editor to write the program instructions. The instructions written in the
source code must follow the C programming language rules. The following steps are used to
create source code file in Windows OS…

 Click on Start button
 Select Run
 Type cmd and press Enter
 Type cd c:\TC\bin in the command prompt and press Enter
 Type TC press Enter
 Click on File -> New in C Editor window
 Type the program
 Save it as FileName.c (Use shortcut key F2 to save)

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Step 2: Compile Source Code (Alt + F9)
Compilation is the process of converting high level language instructions into low level language
instructions. We use the shortcut key Alt + F9 to compile a C program in Turbo C.
Compilation is the process of converting high level language instructions into low level language
instructions.
Whenever we press Alt + F9, the source file is going to be submitted to the Compiler. On
receiving a source file, the compiler first checks for the Errors. If there are any Errors then
compiler returns List of Errors, if there are no errors then the source code is converted into object
code and stores it as file with .obj extension. Then the object code is given to the Linker. The
Linker combines both the object code and specified header file code and generates an Executable
file with .exe extension.
Step 3: Executing / Running Executable File (Ctrl + F9)
After completing compilation successfully, an executable file is created with .exe extension. The
processor can understand this .exe file content so that it can perform the task specified in the
source file.

We use a shortcut key Ctrl + F9 to run a C program. Whenever we press Ctrl + F9, the .exe file is
submitted to the CPU. On receiving .exefile, CPU performs the task according to the instruction
written in the file. The result generated from the execution is placed in a window called User
Screen.
Step 4: Check Result (Alt + F5)
After running the program, the result is placed into User Screen. Just we need to open the User
Screen to check the result of the program execution. We use the shortcut key Alt + F5 to open
the User Screen and check the result.

DataTypes:
Data used in c program is classified into different types based on its properties. In c
programming langauge, datatype can be defined as a set of values with similar characteristics.
All the values in a datatype have the same properties.

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Data types

Unit No :2
Lecture No :L18
Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Datatypes in c programming language are used to specify what kind of value can be stored in a
variable. The memory size and type of value of a variable are determined by varible datatype. In
a c program, each variable or constant or array must have a datatype and this datatype specifies
how much memory is to be allocated and what type of values are to be stored in that variable or
constant or array. The formal definition of datatype is as follows...

Datatype is a set of value with predefined characteristics. Datatypes are used to declare
variable, constants, arrays, pointers and functions.

In c programming language, datatypes are classified as follows...

1.Primary Datatypes (Basic Datatypes OR Predefined Datatypes)
2.Derived Datatypes (Secondary Datatypes OR Userdefined Datatypes)
3.Enumeration Datatypes
4.Void Datatype

Primary Datatypes
The primary datatypes in C programming language are the basic datatypes. All the primary
datatypes are already defined in the system. Primary datatypes are also called as Built-In
datatypes. The following are the primary datatypes in c programming lanuage...

1.Integer Datatype
2.Floating Point Datatype
3.Double Datatype
4.Character Datatype

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Integer Datatype
Integer datatype is a set of whole numbers. Every integer value does not have the decimal value.
We use the keyword "int" to represent integer datatype in c. We use the keyword int to declare
the variables and to specify return type of a function. The integer datatype is used with different
type modifiers like short, long, signed and unsigned. The following table provides complete
details about integer datatype.

Floating Point Datatypes
Floating point datatypes are set of numbers with decimal value. Every floating point value must
contain the decimal value. The floating point datatype has two variants...

float
double

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

We use the keyword "float" to represent floating point datatype and "double" to represent
double datatype in c. Both float and double are similar but they differ in number of decimal
places. The float value contains 6 decimal places whereas double value contains 15 or 19
decimal places. The following table provides complete details about floating point datatypes.

Character Datatype
Character datatype is a set of characters enclosed in single quotations. The following table
provides complete details about character datatype.

The following table provides complete information about all the datatypes in c programming
language...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

void Datatype
The void datatype means nothing or no value. Generally, void is used to specify a function
which does not return any value. We also use the void datatype to specify empty parameters of a
function.

Enumerated Datatype
An enumerated datatype is a user-defined data type that consists of integer constants and each
integer constant is given a name. The keyword "enum" is used to define enumerated datatype.

Derived Datatypes
Derived datatypes are user-defined data types. The derived datatypes are also called as user
defined datatypes or secondary datatypes. In c programming language, the derived datatypes are
created using the following concepts...

Arrays
Structures
Unions
Enumeration

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Input Functions in C:
C programming language provides built-in functions to perform input operations. The input
opearations are used to read user values (input) from keyboard. C programming language
provides the following built-in input functions...

1. scanf()
2. getchar()
3. getch()

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: data inputs, output statements

Unit No :2
Lecture No :L19
Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

4. gets()
5. fscanf()

scanf() function:
The scanf() function is used to read multiple data values of different data types from the
keyboard. The scanf() function is built-in function defined in a header file called "stdio.h".
When we want to use scanf() function in our program, we need to include the respective header
file (stdio.h) using #include statement. The scanf() function has the following syntax...

Syntax:

scanf("format strings",&variableNames);

Example Program
#include <stdio.h>

void main(){

 int i;

 printf("\nEnter any integer value: ");

scanf("%d",&i);

 printf("\nYou have entered %d number",i);

}

Output:

Enter any integer value: 55
You have entered 55 number

In the above example program, we used the scanf() function to read an integer value from the
keyboard and store it into variable 'i'.

The scanf function also used to read multiple data values of different or same data types.
Consider the following example program...

#include <stdio.h>

void main(){

int i;

float x;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

printf("\nEnter one integer followed by one float value : ");

scanf("%d%f",&i, &x);

 printf("\ninteger = %d, float = %f",i, x); }

Output:

Enter one integer followed by one float value : 20 30.5
integer = 20, float = 30.5

In the above example program, we used the scanf() function to read one integer value and one
float value from the keyboard. Here 'i' is an integer variable so we have used format string %d,
and 'x' is a float variable so we have used format string %f.

The scanf() function returns an integer value equal to the total number of input values read using
scanf function.

Example Program

#include <stdio.h>

void main(){

 int i,a,b;

 float x;

 printf("\nEnter two integers and one float : ");

 i = scanf("%d%d%f",&a, &b, &x);

 printf("\nTotal inputs read : %d",i);

}

Output:

Enter two integers and one float : 10 20 55.5
Total inputs read : 3

getchar() function

The getchar() function is used to read a character from the keyboard and return it to the program.
This function is used to read only single character. To read multiple characters we need to write
multiple times or use a looping statement. Consider the following example program...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

#include <stdio.h>

void main(){

 char ch;

 printf("\nEnter any character : ");

 ch = getchar();

 printf("\nYou have entered : %c",ch);

}

Output:

Enter any character : A
You have entered : A

getch() function

The getch() function is similar to getchar function. The getch() function is used to read a
character from the keyboard and return it to the program. This function is used to read only
single character. To read multiple characters we need to write multiple times or use a looping
statement. Consider the following example program...

#include <stdio.h>

void main(){

 char ch;

 printf("\nEnter any character : ");

 ch = getch();

 printf("\nYou have entered : %c",ch);

}

Output:

Enter any character :
You have entered : A

gets() function

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The gets() function is used to read a line of string and stores it into character array. The gets()
function reads a line of string or sequence of characters till a newline symbol enters. Consider
the following example program...

#include <stdio.h>

void main(){

 char name[30];

 printf("\nEnter your favourite website: ");

 gets(name);

 printf("%s",name);

}

Output:

Enter your favourite website: www.btechsmartclass.com

fscanf() function

The fscanf() function is used with the concept of files. The fscanf() function is used to read data
values from a file. When you want to use fscanf() function the file must be opened in reading
mode.

Output Functions in C:

C programming language provides built-in functions to perform output operation. The output
opearations are used to display data on user screen (output screen) or printer or any file. C
programming language provides the following built-in output functions...

printf()

putchar()

puts()

fprintf()

printf() function

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The printf() function is used to print string or data values or combination of string and data
values on the output screen (User screen). The printf() function is built-in function defined in a
header file called "stdio.h". When we want to use printf() function in our program we need to
include the respective header file (stdio.h) using #include statement. The printf() function has
the following syntax...

Syntax:

printf("message to be display!!!");

Example Program

#include <stdio.h>

void main(){

 printf("Hello! Welcome to btechsmartclass!!!");

}

Output:

Hello! Welcome to btechsmartclass!!!

In the above example program, we used the printf() function to print a string on to the output
screen.

The printf() function is also used to display data values. When we want to display data values we
use format string of the data value to be display.

Syntax:

printf("format string",variableName);

Example Program

#include <stdio.h>

void main(){

 int i = 10;

 float x = 5.5;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 printf("%d %f",i, x); }

Output:

10 5.5

In the above example program, we used the printf() function to print data values of variables i
and x on to the output screen. Here i is a integer variable so we have used format string %d and x
is a float variable so we have used format string %f.

The printf() function can also used to display string along with data values.

Syntax:

printf("String format string",variableName);

Example Program

#include <stdio.h>

void main(){

 int i = 10;

 float x = 5.5;

 printf("Integer value = %d, float value = %f",i, x);

}

Output:

Integer value = 10, float value = 5.5

In the above program we are displaying string along with data values.

Every function in C programming language must have a return value. The printf() function also
have integer as return value. The printf() function returns an integer value equalent to the total
number of characters it has printed.

Example Program

#include <stdio.h>

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

void main(){

 int i;

 i = printf("btechsmartclass");

 printf(" is %d number of characters.",i); }

Output:

btechsmartclass is 15 number of characters.

In the above program, first printf() function printing "btechsmartclass" which is of 15 characters.
So it returns integer value 15 to variable "i". The value of "i" is printed in the second printf()
function.

Formatted printf() function

Generally, when we write multiple printf() statements the result is displayed in single line
because the printf() function displays the output in a single line. Consider the following example
program...

#include <stdio.h>

void main(){

 printf("Welcome to ");

 printf("btechsmartclass ");

 printf("the perfect website for learning");

}

Output:

Welcome to btechsmartclass the perfect website for learning

In the above program, there are 3 printf() statements written in different lines but the output is
displayed in single line only.

To display the output in different lines or as we wish, we use some special characters
called escape sequences. Escape sequences are special characters with special functionality used
in printf() function to format the output according to the user requirement. In C programming
language, we have the following escape sequences...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 Escape Sequence
\n

 Meaning
New line

\t Horizontal Tab
\v Vertical Tab
\a Beep sound
\b Backspace
\\ Backward slash
\? Question mark
\' Single quotation mark
\" Double quotation mark

Consider the following example program...

#include <stdio.h>
void main(){
 printf("Welcome to\n");
 printf("btechsmartclass\n");
 printf("the perfect website for learning");
}
Output:
Welcome to
btechsmartclass
the perfect website for learning

putchar() function
The putchar() function is used to display single character on the output screen. The putchar()
functions prints the character which is passed as parameter to it and returns the same character as
return value. This function is used to print only single charater. To print multiple characters we
need to write multiple times or use a looping statement. Consiider the following example
program...

#include <stdio.h>

void main(){

 char ch = 'A';

 putchar(ch);

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

}

Output:
A

puts() function
The puts() function is used to display string on the output screen. The puts() functions prints a
string or sequence of characters till the newline. Consiider the following example program...

#include <stdio.h>

void main(){

 char name[30];

 printf("\nEnter your favourite website: ");

 gets(name);

 puts(name);

}

Output:
Enter your favourite website: www.btechsmartclass.com
www.btechsmartclass.com

fprintf() function
The fprintf() function is used with the concept of files. The fprintf() function is used to print a
line into the file. When you want to use fprintf() function the file must be opened in writting
mode.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Operators:

An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulations. Operators are used in programs to manipulate data and variables.

C operators can be classified into a number of categories, they are
1. Arithmetic Operators
2. Relational Operators
3. Logical Operators
4. Assignment Operators
5. Increment and decrement operators
6. Conditional operators
7. Bitwise Operators
8. Special operators

1. Arithmetic Operators:

The arithmetic operators are the symbols that are used to perform basic mathematical
operations like addition, subtraction, multiplication, division and percentage modulo. The
following table provides information about arithmetic operators.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 5 * 10 = 50

/ Division 10 / 5 = 2

% Remainder of Division 5 % 2 = 1
The addition operator can be used with numerical data types and character data type. When it is
used with numerical values, it performs mathematical addition and when it is used with character
data type values, it performs concatination (appending).

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Operators

Unit No :2
Lecture No :L20
Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The remainder of division operator is used with integer data type only.

2.Relational Operators :

The relational operators are the symbols that are used to compare two values. That
means, the relational operators are used to check the relationship between two values. Every
relational operator has two results TRUE or FALSE. In simple words, the relational operators are
used to define conditions in a program. The following table provides information about relational
operators.
Operator Meaning Example
< Returns TRUE if first value is smaller than second value otherwise

returns FALSE
10 < 5 is
FALSE

> Returns TRUE if first value is larger than second value otherwise
returns FALSE

10 > 5 is
TRUE

<= Returns TRUE if first value is smaller than or equal to second value
otherwise returns FALSE

10 <= 5 is
FALSE

>= Returns TRUE if first value is larger than or equal to second value
otherwise returns FALSE

10 >= 5 is
TRUE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is
FALSE

!= Returns TRUE if both values are not equal otherwise returns
FALSE

10 != 5 is
TRUE

3. Logical Operators:

The logical operators are the symbols that are used to combine multiple conditions into
one condition. The following table provides information about logical operators.

Operator Meaning Example
&& Logical AND - Returns TRUE if all conditions are TRUE

otherwise returns FALSE
10 < 5 && 12 > 10 is
FALSE

|| Logical OR - Returns FALSE if all conditions are FALSE
otherwise returns TRUE

10 < 5 || 12 > 10 is
TRUE

! Logical NOT - Returns TRUE if condition is FLASE and
returns FALSE if it is TRUE

!(10 < 5 && 12 > 10)
is TRUE

Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is
FALSE then complete condition becomes FALSE.
Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is
TRUE then complete condition becomes TRUE.

4. Assignment Operators :

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The assignment operators are used to assign right hand side value (Rvalue) to the left
hand side variable (Lvalue). The assignment operator is used in different variants along with
arithmetic operators. The following table describes all the assignment operators in C
programming language.

Operator Meaning Example
= Assign the right hand side value to left hand side variable A = 15

+= Add both left and right hand side values and store the result into left
hand side variable

A += 10
⇒
A=A+10

-= Subtract right hand side value from left hand side variable value and
store the result into left hand side variable

A -= B
⇒ A=A-B

*= Multiply right hand side value with left hand side variable value and
store the result into left hand side variable

A *= B
⇒ A=A*B

/= Divide left hand side variable value with right hand side variable value
and store the result into left hand side variable

A /= B
⇒ A=A/B

%= Divide left hand side variable value with right hand side variable value
and store the remainder into left hand side variable

A %= B
⇒
A=A%B

5.Increment & Decrement Operators:

The increment and decrement operators are called as unary operators because, both needs
only one operand. The increment operators adds one to the existing value of the operand and the
decrement operator subtracts one from the existing value of the operand. The following table
provides information about increment and decrement operators.
Operator Meaning Example

++ Increment - Adds one to existing value int a = 5;
a++; ⇒ a = 6

-- Decrement - Subtracts one from existing value int a = 5;
a--; ⇒ a = 4

The increment and decrement operators are used infront of the operand (++a) or after the
operand (a++). If it is used infront of the operand, we call it as pre-increment or pre-
decrement and if it is used after the operand, we call it as post-increment or post-decrement.

Pre-Increment or Pre-Decrement

In case of pre-increment, the value of the variable is increased by one before the
expression evaluation. In case of pre-decrement, the value of the variable is decreased by one
before the expression evaluation. That means, when we use pre increment or pre decrement, first

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

the value of the variable is incremented or decremented by one, then modified value is used in
the expression evaluation.
Example:
#include <stdio.h>
void main()
{
 int i = 5,j;
 j = ++i; // Pre-Increment
 printf("i = %d, j = %d",i,j);
}

Output:

i = 6, j = 6

Post-Increment or Post-Decrement

In case of post-increment, the value of the variable is increased by one after the
expression evaluation. In case of post-decrement, the value of the variable is decreased by one
after the expression evaluation. That means, when we use post-increment or post-decrement, first
the expression is evaluated with existing value, then the value of the variable is incremented or
decremented by one.
Example
#include <stdio.h>
void main()
{
 int i = 5,j;
 j = i++; // Post-Increment
 printf("i = %d, j = %d",i,j);
}

Output:

i = 6, j = 5

6.Conditional Operator (?:)

The conditional operator is also called as ternary operator because it requires three
operands. This operator is used for decision making. In this operator, first we verify a condition,
then we perform one operation out of the two operations based on the condition result. If the
condition is TRUE the first option is performed, if the condition is FALSE the second option is
performed. The conditional operator is used with the following syntax...
Condition ? TRUE Part : FALSE Part ;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Example:
A = (10<15) ? 100 : 200 ; ⇒ A value is 100

7.Bitwise Operators:

The bitwise operators are used to perform bit level operations in c programming
language. When we use the bitwise operators, the operations are performed based on the binary
values. The following table describes all the bitwise operators in C programming language.

Let us consider two variables A and B as A = 25 (11001) and B = 20 (10100)
Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1 otherwise it is 0 A & B
⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0 otherwise it is 1 A | B
⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are same otherwise it
is 1

A ^ B
⇒ 13 (01101)

~ the result of Bitwise once complement is nagation of the bit
(Flipping)

~A
⇒ 6 (00110)

<< the Bitwise left shift operator shifts all the bits to the left by
specified number of positions

A<<2
⇒ 100
(1100100)

>> the Bitwise right shift operator shifts all the bits to the right by
specified number of positions

A>>2
⇒ 6 (00110)

8.Special Operators (sizeof, pointer, comma, dot etc.)
The following are the special operators in c programming language.

sizeof operator
This operator is used to find the size of the memory (in bytes) allocated for a variable. This
operator is used with the following syntax...
sizeof(variableName);
Example
sizeof(A); ⇒ result is 2 if A is an integer

Pointer operator (*)
This operator is used to define pointer variables in c programming language.
Comma operator (,)
This operator is used to separate variables while they are declaring, separate the expressions in
function calls etc..

Dot operator (.)
This operator is used to access members of structure or union.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Operator Precedence and Associativity

Explain Operator Precedence

Operator precedence is used to determine the order of operators evaluated in an expression. In
c programming language every operator has precedence (priority). When there is more than one
operator in an expression the operator with higher precedence is evaluated first and the operator
with least precedence is evaluated last.

Discuss about Operator Associativity

Operator associativity is used to determine the order of operators with equal precedence
evaluated in an expression. In c programming language, when an expression contains multiple
operators with equal precedence, we use associativity to determine the order of evaluation of
those operators.
In c programming language the operator precedence and associativity is as shown in the
following table...
Precedence Operator Operator Meaning Associativity

1 ()
[]
->
.

function call
array reference
structure member access
structure member access

Left to Right

2 !
~
+
-

++
--
&
*

sizeof
(type)

negation
1's complement
Unary plus
Unary minus
increment operator
decrement operator
address of operator
pointer
returns size of a variable
type conversion

Right to Left

Unit No :2
Lecture No :L21
Book Reference:T1

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: precedence and
associativity

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

3 *
/

%

multiplication
division
remainder

Left to Right

4 +
-

addition
subtraction

Left to Right

5 <<
>>

left shift
right shift

Left to Right

6 <
<=
>

>=

less than
less than or equal to
greater than
greater than or equal to

Left to Right

7 ==
!=

equal to
not equal to

Left to Right

8 & bitwise AND Left to Right
9 ^ bitwise EXCLUSIVE OR Left to Right
10 | bitwise OR Left to Right
11 && logical AND Left to Right
12 || logical OR Left to Right
13 ?: conditional operator Left to Right
14 =

*=
/=

%=
+=
-=
&=
^=
|=

<<=
>>=

assignment
assign multiplication
assign division
assign remainder
assign additon
assign subtraction
assign bitwise AND
assign bitwise XOR
assign bitwise OR
assign left shift
assign right shift

Right to Left

15 , separator Left to Right

In the above table, the operator precedence decrease from top to bottom and increase from
bottom to top.

Unit No :2
Lecture No :L22
Book Reference:T1

Faculty Name:N.SANDHYA
RANI Subject :PPS
Topic: evaluation of expressions

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Expressions:

Define an Expression

In any programming language, if we want to perform any calculation or to frame any
condition etc., we use a set of symbols to perform the task. These set of symbols makes an
expression.

In C programming language, an expression is defined as follows...

An expression is a collection of operators and operands that represents a specific value.

In the above definition, operator is a symbol which performs tasks like arithmetic
operations, logical operations and conditional operations etc.,
Operands are the values on which the operators perform the task. Here operand can be a direct
value or variable or address of memory location.

Expression Types in C

In C programming language, expressions are divided into THREE types. They are as follows...

1.Infix Expression
2.Postfix Expression
3.Prefix Expression

The above classification is based on the operator position in the expression.
1.Infix Expression

The expression in which operator is used between operands is called as infix expression.
The infix expression has the following general structure...

Operand1 Operator Operand2
Example

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

2.Postfix Expression
The expression in which operator is used after operands is called as postfix expression.
The postfix expression has the following general structure...
Operand1 Operand2 Operator
Example:

3.Prefix Expression
The expression in which operator is used before operands is called as prefix expression.
The prefix expression has the following general structure...
Operator Operand1 Operand2
Example:

Expression Evaluation in C
In C programming language, expression is evaluated based on the operator precedence and
associativity. When there are multiple operators in an expression, they are evaluated according to
their pr
ecedence and associativity. The operator with higher precedence is evaluated first and the
operator with least precedence is evaluated last.
An expression is evaluated based on the precedence and associativity of the operators in
that expression.
To understand expression evaluation in c, let us consider the following simple example
expression...

10 + 4 * 3 / 2

In the above expression there are three operators +, * and /. Among these three operators,
both multiplication and division have same higher precedence and addition has lower
precedence. So, according to the operator precedence both multiplication and division are
evaluated first and then addition is evaluated. As multiplication and division have same
precedence they are evaluated based on the associativity. Here, the associativity of multiplication
and division is left to right. So, multiplication is performed first, then division and finally
addition. So, the above expression is evaluated in the order of * / and +. It is evaluated as
follows...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

4 * 3 ====> 12
12 / 2 ===> 6
10 + 6 ===> 16
The expression is evaluated to 16.

Unit No :2
Lecture No :L23
Book Reference:T1

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Type Conversions In
Expresssions

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Type Conversions

In a programming language, the expression contains data values of same datatype or
different datatypes. When the expression contains similar datatype values then it is evaluated
without any problem. But if the expression contains two or more different datatype values then
they must be converted to single datatype of destination datatype. Here, destination is the
location where the final result of that expression is stored. For example,the multiplication of an
integer data value with float data value and storing the result into a float variable. In this case, the
integer value must be converted to float value so that the final result is a float datatype value.

In c programming language, the data conversion is performed in two different methods as
follows.
Type Conversion
Type Casting

Type Conversion

The type conversion is the process of converting a data value from one datatype to
another datatype automatically by the compiler. Sometimes type conversion is also called
as implicit type conversion. The implicit type conversion is automatically performed by the
compiler.
For example, in c programming language, when we assign an integer value to a float variable the
integer value automically gets converted to float value by adding decimal value 0. And when a
float value is assigned to an integer variable the float value automatically gets converted to
integer value by removing the decimal value. To understand more about type conversion observe
the following...
int i = 10 ;
float x = 15.5 ;
char ch = 'A' ;

i = x ; =======> x value 15.5 is converted as 15 and assigned to variable i

x = i ; =======> Here i value 10 is converted as 10.000000 and assigned to variable x

i = ch ; =======> Here the ASCII value of A (65) is assigned to i
Example Program
#include <stdio.h>
void main()
{
 int i = 95 ;
 float x = 90.99 ;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 char ch = 'A' ;
 i = x ;
 printf("i value is %d\n",i);
 x = i ;
 printf("x value is %f\n",x);
 i = ch ;
 printf("i value is %d\n",i);
}
Output:
i value is 90
x value is 90.000000
i value is 65value is 6

In the above program, we assign i = x, i.e., float variable value is assigned to integer
variable. Here, the compiler automatically converts the float value (90.99) into integer value (90)
by removing the decimal part of the float value (90.99) and then it is assigned to variable i.
Similarly when we assign x = i, the integer value (90) gets converted to float value (90.000000)
by adding zero as decimal part.

Type Casting

Type casting is also called as explicit type conversion. Compiler converts data from one
datatype to another datatype implicitly. When compiler converts implicitly, there may be a data
loss.In such case, we convert the data from one datatype to another datatype using explicit type
conversion. To perform this we use the unary cast operator. To convert data from one type to
another type we specify the target datatype in paranthesis as a prefix to the data value that has to
be converted. The general syntax of type casting is as follows...
(TargetDatatype) DataValue
Example
int totalMarks = 450, maxMarks = 600 ;
float average ;

average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer data values. When we
perform totalMarks / maxMarks the result is a float value, but the destination (average) datatype
is float. So we use type casting to convert totalMarks and maxMarks into float datatype.
Example Program
#include <stdio.h>
void main(){
 int a, b, c ;
 float avg ;
 printf("Enter any three integer values : ") ;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

scanf("%d%d%d", &a, &b, &c) ;
avg = (a + b + c) / 3 ;
printf("avg before casting = %f\n",avg);
avg = (float)(a + b + c) / 3 ;
printf("avg after casting = %f\n",avg);

}
Output:
Enter any three integer values : 5 3 2
avg before casting = 3
avg after casting = 3.333333
E

nter any three integer values : 5 3 2

Unit No :2
Lecture No :L24
Book Reference:T1

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Control Structures: if

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Control structures: Decision statements; if and switch statement; Loop control statements:
while, for and do while loops, jump statements, break, continue, goto statements.

Decision Making statements:

In c programming language, the program execution flow is, line by line from top to
bottom. That means the c program is executed line by line from the main method. But this type
of execution flow may not be suitable for all the program solutions. Sometimes, we make some
decisions or we may skip the execution of one or more lines of code. Consider a situation, where
we write a program to check whether a student has passed or failed in a particular subject. Here,
we need to check whether the marks are greater than the pass marks or not. If marks are greater,
then we take the decision that the student has passed otherwise failed. To solve such kind of
problems in c we use the statements called decision making statements.

Decision making statements are the statements that are used to verify a given condition and
decides whether a block of statements gets executed or not based on the condition result.

In c programming language, there are two decision making statements they are as follows...
1. if statement
2. switch statement

1. if statement in c

In c, if statement is used to make decisions based on a condition. The if statement verifies
the given condition and decides whether a block of statements are executed or not based on the
condition result. In c, if statement is classified into four types as follows...

1. Simple if statement
2. if - else statement
3. Nested if statement
4. if-else-if statement (if-else ladder)

1. Simple if statement

Simple if statement is used to verify the given condition and executes the block of
statements based on the condition result. The simple if statement evaluates specified condition. If
it is TRUE, it executes the next statement or block of statements. If the condition is FALSE, it

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

skips the execution of the next statement or block of statements. The general syntax and
execution flow of the simple if statement is as follows...

Simple if statement is used when we have only one option that is executed or skipped based on a
condition.
Example Program | Test whether given number is divisible by 5.
#include <stdio.h>
#include<conio.h>
void main(){
 int n ;
 clrscr() ;
 printf("Enter any integer number: ") ;
 scanf("%d", &n) ;
 if (n%5 == 0)
 printf("Given number is divisible by 5\n") ;
 printf("statement does not belong to if!!!") ;
}
Output 1:
Enter any integer number: 100
Given number is divisible by 5
statement does not belong to if!!!
Output 2:
Enter any integer number: 99
statement does not belong to if!!!
2. if - else statement
The if - else statement is used to verify the given condition and executes only one out of the two
blocks of statements based on the condition result. The if-else statement evaluates the specified
condition. If it is TRUE, it executes a block of statements (True block). If the condition is
FALSE, it executes another block of statements (False block). The general syntax and execution
flow of the if-else statement is as follows...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The if-else statement is used when we have two options and only one option has to be executed
based on a condition result (TRUE or FALSE).
Example Program | Test whether given number is even or odd.
#include <stdio.h>
#include<conio.h>
void main(){
 int n ;
 clrscr() ;
 printf("Enter any integer number: ") ;
 scanf("%d", &n) ;
 if (n%2 == 0)
 printf("Given number is EVEN\n") ;
 else
 printf("Given number is ODD\n") ;
}
Output 1:
Enter any integer number: 100
Given number is EVEN
Output 2:
Enter any integer number: 99
Given number is ODD
3. Nested if statement
Writing a if statement inside another if statement is called nested if statement. The general syntax
of the nested if statement is as follows...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The nested if statement can be defined using any combination of simple if & if-else statements.
The flow of control using Nested if...else statement is determined as follows

Whenever nested if…else statement is encountered, first <condition1> is tested.
It returns either true or false.

If condition1 (or outer condition) is false, then the control transfers to else-body (if
exists) by skipping if-body.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

If condition1 (or outer condition) is true, then condition2 (or inner condition) is tested.
If the condition2 is true, if-body gets executed. Otherwise, the else-body that is inside of if
statement gets executed.

Example Program | Test whether given number is even or odd if it is below 100.
#include <stdio.h>
#include<conio.h>
void main(){
 int n ;
 clrscr() ;
 printf("Enter any integer number: ") ;
 scanf("%d", &n) ;
 if (n < 100)
 {
 printf("Given number is below 100\n") ;
 if(n%2 == 0)
 printf("And it is EVEN") ;
 else
 printf("And it is ODD") ;
 }
 else
 printf("Given number is not below 100") ;
}
Output 1:
Enter any integer number: 55
Given number is below 100
And it is ODD
Output 2:
Enter any integer number: 999
Given number is not below 100
4. if - else - if statement (if-else ladder)
Writing a if statement inside else of a if statement is called if - else - if statement. The general
syntax of the if-else-if statement is as follows...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The if-else-if statement can be defined using any combination of simple if & if-else statements.
The flow of control using else--- if ladder statement is determined as follows:

Whenever else if ladder is encountered, condition1 is tested first. If it is true, the
statement 1 gets executed. After then the control transfers to stmt-x.

If condition1 is false, then condition2 is tested. If condition2 is false, the other
conditions are tested. If all are false, the default stmt at the end gets executed. After then
the control transfers to stmt-x.

If any one of all conditions is true, then the body associated with it gets executed. After
then the control transfers to stmt-x.

Example Program | Find the largest of three numbers.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

#include <stdio.h>
#include<conio.h>
void main(){

int a, b, c ;
clrscr() ;

printf("Enter any three integer numbers: ") ;
scanf("%d%d%d", &a, &b, &c) ;

if(a>=b && a>=c)
printf("%d is the largest number", a) ;

else if (b>=a && b>=c)
printf("%d is the largest number", b) ;

else
printf("%d is the largest number", c) ;

}
Output 1:
Enter any three integer numbers: 55 60 20
60 is the largest number
MOST IMPORTANT POINTS TO BE REMEMBERED
When we use conditional control statement like if statement, condition might be an expression
evaluated to a numerical value, a variable or a direct numerical value. If the expression value or
direct value is zero the conditon becomes FALSE otherwise becomes TRUE.

To understand more consider the following statements...
if(10) - is TRUE
if(x) - is FALSE if x value is zero otherwise TRUE
if(a+b) - is FALSE if a+b value is zero otherwise TRUE
if(a = 99) - is TRUE because a value is non-zero
if(10, 5, 0) - is FALSE because it considers last value
if(0) - is FALSE
if(a=10, b=15, c=0) - is FALSE because last value is zero

Unit No :2
Lecture No :L25
Book Reference:T1

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Switch Statement

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Switch statement:
Consider a situation in which we have more number of options out of which we need to select
only one option that is to be executed. Such kind of problems can be solved using nested
if statement. But as the number of options increases, the complexity of the program also gets
increased. This type of problems can be solved very easily using switch statement. Using switch
statement, one can select only one option from more number of options very easily. In switch
statement, we provide a value that is to be compared with a value associated with each option.
Whenever the given value matches with the value associated with an option, the execution starts
from that option. In switch statement every option is defined as a case.
The switch statement has the following syntax and execution flow diagram...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The switch statement contains one or more number of cases and each case has a value associated
with it. At first switch statement compares the first case value with the switchValue, if it gets
matched the execution starts from the first case. If it doesn't match the switch statement
compares the second case value with the switchValue and if it is matched the execution starts
from the second case. This process continues until it finds a match. If no case value matches with
the switchValue specified in the switch statement, then a special case called default is executed.
When a case value matches with the switchValue, the execution starts from that particular case.
This execution flow continues with next case statements also. To avoid this, we use "break"
statement at the end of each case. That means the break statement is used to terminate the switch
statement. However it is optional.
Example Program | Display pressed digit in words.
#include <stdio.h>
#include<conio.h>
void main(){
 int n ;
 clrscr() ;

 printf("Enter any digit: ") ;
 scanf("%d", &n) ;

 switch(n)
 {
 case 0: printf("ZERO") ;
 break ;
 case 1: printf("ONE") ;
 break ;
 case 2: printf("TWO") ;
 break ;
 case 3: printf("THREE") ;
 break ;
 case 4: printf("FOUR") ;
 break ;
 case 5: printf("FIVE") ;
 break ;
 case 6: printf("SIX") ;
 break ;
 case 7: printf("SEVEN") ;
 break ;
 case 8: printf("EIGHT") ;
 break ;
 case 9: printf("NINE") ;
 break ;
 default: printf("Not a Digit") ;
 }
 getch() ;
}
Output 1:
Enter any digit: 5

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

FIVE
Output 2:
Enter any digit: 15
Not a Digit

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use switch statement, we must follow the following...
Both switch and case are keywords so they must be used only in lower case letters.
The data type of case value and the value specified in switch statement must be same.
switch and case values must be either integer or character but not float or string.
A switch statement can contain any number of cases.
The keyword case and its value must be separated with a white space.
The case values need not be defined in sequence, they can be in any order.
The default case is optional and it can be defined anywhere inside the switch statement.
The switch value might be a direct value, a variable or an expression.

Loop control statements:
Consider a situation in which we execute a single statement or block of statements

repeatedly for required number of times. Such kind of problems can be solved
using looping statements in C. For example, assume a situation where we print a message for
100 times. If we want to perform that task without using looping statements, we have to either
write 100 printf statements or we have to write the same message for 100 times in a single printf
statement. Both are complex methods. The same task can be performed very easily using looping
statements.
The looping statements are used to execute a single statement or block of statements repeatedly
until the given condition is FALSE.

C language provides three looping statements...
1.while statement
2.do-while statement
3.for statement
while Statement

1. While statement:

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Loop Control Statements
:While

Unit No :2
Lecture No :L26
Book Reference: T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The while statement is used to execute a single statement or block of statements
repeatedly as long as the given condition is TRUE. The while statement is also known as Entry
control looping statement. The while statement has the following syntax...

The while statement has the following execution flow diagram...

At first, the given condition is evaluated. If the condition is TRUE, the single statement
or block of statements gets executed. Once the execution gets completed the condition is
evaluated again. If it is TRUE, again the same statements gets executed. The same process is
repeated until the condition is evaluated to FALSE. Whenever the condition is evaluated to
FALSE, the execution control moves out of the while block.

Example Program | Program to display even numbers upto 10.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

#include <stdio.h>
#include<conio.h>
void main(){
 int n = 0;
 clrscr() ;
 printf("Even numbers upto 10\n");

 while(n <= 10)
 {
 if(n%2 == 0)
 printf("%d\t", n) ;
 n++ ;
 }

 getch() ;
}

Output 1:
Even numbers upto 10
0 2 4 6 8 10

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use while statement, we must follow the following...
while is a keyword so it must be used only in lower case letters.
If the condition contains variable, it must be assigned a value before it is used.
The value of the variable used in condition must be modified according to the requirement inside
the while block.
In while statement, the condition may be a direct integer value, a variable or a condition.
A while statement can be an empty statement.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

2. do-While statement:
The do-while statement is used to execute a single statement or block of statements repeatedly as
long as given the condition is TRUE. The do-while statement is also known as Exit control
looping statement. The do-while statement has the following syntax...

The do-while statement has the following execution flow diagram.

Unit No :2
Lecture No :L27
Book Reference: T1

Faculty Name: N.SANDHYA
RANI Subject :PPS
Topic: Loop Control Statements :
Do-While ,for

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

At first, the single statement or block of statements which are defined in do block are
executed. After execution of do block, the given condition gets evaluated. If the condition is
evaluated to TRUE, the single statement or block of statements of do block are executed again.
Once the execution gets completed again the condition is evaluated. If it is TRUE, again the
same statements are executed. The same process is repeated until the condition is evaluated to
FALSE. Whenever the condition is evaluated to FALSE, the execution control moves out of the
while block.

Example Program | Program to display even numbers upto 10.
#include <stdio.h>
#include<conio.h>
void main(){
 int n = 0;
 clrscr() ;
 printf("Even numbers upto 10\n");

 do
 {
 if(n%2 == 0)
 printf("%d\t", n) ;
 n++ ;
 }while(n <= 10) ;

 getch() ;
}

Output 1:

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Even numbers upto 10
0 2 4 6 8 10

MOST IMPORTANT POINTS TO BE REMEMBERED
When we use do-while statement, we must follow the following...
Both do and while are keywords so they must be used only in lower case letters.
If the condition contains variable, it must be assigned a value before it is used.
The value of the variable used in condition must be modified according to the requirement inside
the do block.
In do-while statement the condition may be, a direct integer value, a variable or a condition.
A do-while statement can be an empty statement.
In do-while, the block of statements are executed at least once.

3.for statement:
The for statement is used to execute a single statement or a block of statements repeatedly as
long as the given condition is TRUE. The for statement has the following syntax and execution
flow diagram...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

At first, the for statement executes initialization followed by condition evaluation. If the
condition is evaluated to TRUE, the single statement or block of statements of for statement are
executed. Once the execution gets completed, the modification statement is executed and again
the condition is evaluated. If it is TRUE, again the same statements are executed. The same
process is repeated until the condition is evaluated to FALSE. Whenever the condition is
evaluated to FALSE, the execution control moves out of the for block.

Example Program | Program to display even numbers upto 10.
#include <stdio.h>
#include<conio.h>
void main(){
 int n ;
 clrscr() ;
 printf("Even numbers upto 10\n");

 for(n = 0 ; n <= 10 ; n++)
 {
 if(n%2 == 0)
 printf("%d\t", n) ;
 }

 getch() ;
}

Output 1:

Even numbers upto 10
0 2 4 6 8 10

MOST IMPORTANT POINTS TO BE REMEMBERED
When we use for statement, we must follow the following.
for is a keyword so it must be used only in lower case letters.
Every for statement must be provided with initialization, condition and modification (They can
be empty but must be separated with ";")
Ex: for (; ;) or for (; condition ; modification) or for (; condition ;)
In for statement, the condition may be a direct integer value, a variable or a condition.
The for statement can be an empty statement.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Break,continue and goto statements:
In c, there are control statements which does not need any condition to control the program
execution flow. These control statements are called as unconditional control statements. C
programming language provides the following unconditional control statements...
1.break
2.continue
3.goto
The above three statements does not need any condition to control the program execution flow.

1.break statement:
In C, the break statement is used to perform the following two things.
break statement is used to terminate switch case statement
break statement is also used to terminate looping statements like while, do-while and for.
When a break statement is encountered inside the switch case statement, the execution control
moves out of the switch statement directly. For example consider the following program.
Example Program | Program to perform all arithmetic operations using switch statement.
#include <stdio.h>
#include<conio.h>
void main(){

int number1, number2, result ;
char operator;
clrscr() ;
printf("Enter any two integer numbers: ") ;
scanf("%d%d", &number1, &number2) ;
printf("Please enter any arithmetic operator: ");
operator = getchar();
switch(operator)
{

case '+': result = number1 + number2 ;
printf("Addition = %d", result) ;
break;

case '-': result = number1 - number2 ;
printf("Subtraction = %d", result) ;
break;

case '*': result = number1 * number2 ;
printf("Multiplication = %d", result) ;
break;

Unit No :2
Lecture No :L28
Book Reference: T1

Faculty Name: N.SANDHYA
RANI Subject : PPS
Topic: Braeak, Jump , Continue ,
goto statement

http://btechsmartclass.com/CP/c-do-while-statement.htm

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 case '/': result = number1 / number2 ;
 printf("Division = %d", result) ;
 break;
 case '%': result = number1 % number2 ;
 printf("Remainder = %d", result) ;
 break;
 default: printf("\nWrong selection!!!") ;
 }
 getch() ;
}
Output
Enter any two integer numbers: 50 30
Please enter any arithmetic operator: *
Multiplication = 1500 any two integer numbers: 50 30

When the break statement is encountered inside the looping statement, the execution control
moves out of the looping statements. The break statement execution is as shown in the following
figure.

For example, consider the following example program...
Example Program for break statement.
#include <stdio.h>
#include<conio.h>
void main(){
 char ch ;
 clrscr() ;
 do
 {
 printf("Enter Y / N : ") ;
 scanf("%c", &ch) ;
 if(ch == 'Y')
 {
 printf("Okay!!! Repeat again !!!\n") ;
 }
 else

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 {
 printf("Okay !!! Breaking the loop !!!") ;
 break ;
 }
 } while(1) ;
 getch() ;
}

Output:
Enter Y / N : Y
Okay!!! Repeat again !!!
Enter Y / N : Y
Okay!!! Repeat again !!!
Enter Y / N : N
Okay !!! Breaking the loop !!!

2.Continue statement:
The continue statement is used to move the program execution control to the beginning of
looping statement. When continue statement is encountered in a looping statement, the
execution control skips the rest of the statements in the looping block and directly jumps to the
beginning of the loop. The continue statement can be used with looping statements like while,
do-while and for.
When we use continue statement with while and do-while statements the execution control
directly jumps to the condition. When we use continue statement with for statement the
execution control directly jumps to the modification portion (increment / decrement / any
modification) of the for loop. The continue statement execution is as shown in the following
figure.

Example Program | Program to illustrate continue statement.
#include <stdio.h>

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

#include<conio.h>
void main(){
 int number ;
 clrscr() ;
 while(1)
 {
 printf("Enter any integer number: ") ;
 scanf("%d", &number) ;
 if(number%2 == 0)
 {
 printf("Entered number is EVEN!!! Try another number!!!\n") ;
 continue ;
 }
 else
 {
 printf("You have entered ODD number!!! Bye!!!") ;
 exit(0) ;
 }
 }
 getch() ;
}

Output

Enter any integer numbers: 50
Entered number is EVEN!!! Try another number!!!
Enter any integer numbers: 100
Entered number is EVEN!!! Try another number!!!
Enter any integer numbers: 10
Entered number is EVEN!!! Try another number!!!
Enter any integer number: 15
You have entered ODD number!!! Bye!!!
3.goto statement:
The goto statement is used to jump from one line to another line in the program.
Using goto statement we can jump from top to bottom or bottom to top. To jump from one line
to another line, the goto statement requires a lable. Lable is a name given to the instruction or
line in the program. When we use goto statement in the program, the execution control directly
jumps to the line with specified lable.
Example Program for goto statement.
#include <stdio.h>
#include<conio.h>
void main(){
 clrscr() ;
 printf("We are at first printf statement!!!\n") ;
 goto last ;
 printf("We are at second printf statement!!!\n") ;
 printf("We are at third printf statement!!!\n") ;
 last: printf("We are at last printf statement!!!\n") ;
 getch() ;
}

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Output

We are at first printf statement!!!
We are at last printf statement!!!

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use break, continue and goto statements, we must follow the following...
 The break is a keyword so it must be used only in lower case letters.
 The break statement can not be used with if statement.
 The break statement can be used only in switch case and looping statements.
 The break statement can be used with if statement, only if that if statement is written

inside the switch case or looping statements.
 The continue is a keyword so it must be used only in lower case letters.
 The continue statement is used only within looping statements.
 The continue statement can be used with if statement, only if that if statement is written

inside the looping statements.
 The goto is a keyword so it must be used only in lower case letters.
 The goto statement must requires a lable.
 The goto statement can be used with any statement like if, switch, while, do-while and

for etc,.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Basic structure of C programs:

C is a structured programming language. Every c program and its statements must be in a

particular structure. Every c program has the following general structure...

Line 1: Comments - They are ignored by the compiler

This section is used to provide small description of the program. The comment lines are simply

ignored by the compiler, that means they are not executed. In C, there are two types of

comments.

1.Single Line Comments: Single line comment begins with // symbol. We can write any

number of single line comments.

2.Multiple Lines Comments: Multiple lines comment begins with /* symbol and ends

with */. We can write any number of multiple lines comments in a program.

In a C program, the comment lines are optional. Based on the requirement, we write the

comments. All the comment lines in a C program just provide the guidelines to understand the

program and its code.

Line 2: Preprocessing Commands

Pre-processing commands are used to include header files and to define constants. We use

#include statement to include header file into our program. We use #define statement to define a

constant. The pre-processing statements are used according to the requirment. If we don't need

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Introduction to C language:
Structure of C programs

Unit No :2

Lecture No :L17

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

any header file, then no need to write #include statement. If we don't need any constant, then no

need to write #define statement.

Line 3: Global Declaration

Global declaration is used to define the global variables, which are common for all the functions

after its declaration. We also use the global declaration to declare functions. This global

declaration is used based on the requirement.

Line 4: int main()

Every C program must write this statement. This statement (main) specifies the starting point of

the C program execution. Here, main is a user defined method which tells the compiler that this

is the starting point of the program execution. Here, int is a datatype of a value that is going to

return to the Operating System after completing the main method execution. If we don't want to

return any value, we can use it as void.

Line 5: Open Brase ({)

The open brase indicates the begining of the block which belongs to the main method. In C

program, every block begins with '{' symbol.

Line 6: Local Declaration

In this section, we declare the variables and functions that are local to the function or block in

which they are declared. The variables which are declared in this section are valid only within

the function or block in which they are declared.

Line 7: Executable statements

In this section, we write the statements which perform tasks like reading data, displaying result,

calculations etc., All the statements in this section are written according to the requirment.

Line 9: Closing Brase (})

The close brase indicates the end of the block which belongs to the main method. In C program

every block ends with '}' symbol.

Line 10, 11, 12, ...: Userdefined function()

This is the place where we implement the userdefined functions. The userdefined function

implementation can also be performed before the main method. In this case, the user defined

function need not to be declared. Directly it can be implemented, but it must be before the main

method. In a program, we can define as many userdefined functions as we want. Every user

defined function needs a function call to execute its statements.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

General rules for any C program

1.Every executable statement must end with semicolon symbol (;).

2.Every C program must contain exactly one main method (Starting point of the program

execution).

3.All the system defined words (keywords) must be used in lowercase letters.

4.Keywords can not be used as user defined names(identifiers).

5.For every open brase ({), there must be respective closing brase (}).

6.Every variable must be declared before it is used.

Process of compiling and running a C program:

Generally, the programs created using programming languages like C, C++, Java etc., are written

using high level language like English. But, computer cannot understand the high level language.

It can understand only low level language. So, the program written in high level language needs

to be converted into low level language to make it understandable for the computer. This

conversion is performed using either Interpreter or Compiler.

Popular programming languages like C, C++, Java etc., use compiler to convert high level

language instructions into low level language instructions. Compiler is a program that converts

high level language instructions into low level language instructions. Generally, compiler

performs two things, first it verifies the program errors, if errors are found, it returns list of errors

otherwise it converts the complete code into low level language.

To create and execute C programs in Windows Operating System, we need to install Turbo C

software. We use the following steps to create and execute C programs in Windows OS…

Step 1: Creating Source Code
Source code is a file with C programming instructions in high level language. To create source

code, we use any text editor to write the program instructions. The instructions written in the

source code must follow the C programming language rules. The following steps are used to

create source code file in Windows OS…

 Click on Start button

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 Select Run

 Type cmd and press Enter

 Type cd c:\TC\bin in the command prompt and press Enter

 Type TC press Enter

 Click on File -> New in C Editor window

 Type the program

 Save it as FileName.c (Use shortcut key F2 to save)

Step 2: Compile Source Code (Alt + F9)
Compilation is the process of converting high level language instructions into low level language

instructions. We use the shortcut key Alt + F9 to compile a C program in Turbo C.

Compilation is the process of converting high level language instructions into low level language

instructions.

Whenever we press Alt + F9, the source file is going to be submitted to the Compiler. On

receiving a source file, the compiler first checks for the Errors. If there are any Errors then

compiler returns List of Errors, if there are no errors then the source code is converted into object

code and stores it as file with .obj extension. Then the object code is given to the Linker. The

Linker combines both the object code and specified header file code and generates an Executable

file with .exe extension.

Step 3: Executing / Running Executable File (Ctrl + F9)

After completing compilation successfully, an executable file is created with .exe extension. The

processor can understand this .exe file content so that it can perform the task specified in the

source file.

We use a shortcut key Ctrl + F9 to run a C program. Whenever we press Ctrl + F9, the .exe file is

submitted to the CPU. On receiving .exefile, CPU performs the task according to the instruction

written in the file. The result generated from the execution is placed in a window called User

Screen.

Step 4: Check Result (Alt + F5)
After running the program, the result is placed into User Screen. Just we need to open the User

Screen to check the result of the program execution. We use the shortcut key Alt + F5 to open

the User Screen and check the result.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

DataTypes:

Data used in c program is classified into different types based on its properties. In c

programming langauge, datatype can be defined as a set of values with similar characteristics.

All the values in a datatype have the same properties.

Datatypes in c programming language are used to specify what kind of value can be stored in a

variable. The memory size and type of value of a variable are determined by varible datatype. In

a c program, each variable or constant or array must have a datatype and this datatype specifies

how much memory is to be allocated and what type of values are to be stored in that variable or

constant or array. The formal definition of datatype is as follows...

Datatype is a set of value with predefined characteristics. Datatypes are used to declare

variable, constants, arrays, pointers and functions.

In c programming language, datatypes are classified as follows...

1.Primary Datatypes (Basic Datatypes OR Predefined Datatypes)

2.Derived Datatypes (Secondary Datatypes OR Userdefined Datatypes)

3.Enumeration Datatypes

4.Void Datatype

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Data types

Unit No :2

Lecture No :L18

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Primary Datatypes

The primary datatypes in C programming language are the basic datatypes. All the primary

datatypes are already defined in the system. Primary datatypes are also called as Built-In

datatypes. The following are the primary datatypes in c programming lanuage...

1.Integer Datatype

2.Floating Point Datatype

3.Double Datatype

4.Character Datatype

Integer Datatype

Integer datatype is a set of whole numbers. Every integer value does not have the decimal value.

We use the keyword "int" to represent integer datatype in c. We use the keyword int to declare

the variables and to specify return type of a function. The integer datatype is used with different

type modifiers like short, long, signed and unsigned. The following table provides complete

details about integer datatype.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Floating Point Datatypes

Floating point datatypes are set of numbers with decimal value. Every floating point value must

contain the decimal value. The floating point datatype has two variants...

float

double

We use the keyword "float" to represent floating point datatype and "double" to represent

double datatype in c. Both float and double are similar but they differ in number of decimal

places. The float value contains 6 decimal places whereas double value contains 15 or 19

decimal places. The following table provides complete details about floating point datatypes.

Character Datatype

Character datatype is a set of characters enclosed in single quotations. The following table

provides complete details about character datatype.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The following table provides complete information about all the datatypes in c programming

language...

void Datatype

The void datatype means nothing or no value. Generally, void is used to specify a function

which does not return any value. We also use the void datatype to specify empty parameters of a

function.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Enumerated Datatype

An enumerated datatype is a user-defined data type that consists of integer constants and each

integer constant is given a name. The keyword "enum" is used to define enumerated datatype.

Derived Datatypes

Derived datatypes are user-defined data types. The derived datatypes are also called as user

defined datatypes or secondary datatypes. In c programming language, the derived datatypes are

created using the following concepts...

Arrays

Structures

Unions

Enumeration

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Input Functions in C:

C programming language provides built-in functions to perform input operations. The input

opearations are used to read user values (input) from keyboard. C programming language

provides the following built-in input functions...

1. scanf()

2. getchar()

3. getch()

4. gets()

5. fscanf()

scanf() function:

The scanf() function is used to read multiple data values of different data types from the

keyboard. The scanf() function is built-in function defined in a header file called "stdio.h".

When we want to use scanf() function in our program, we need to include the respective header

file (stdio.h) using #include statement. The scanf() function has the following syntax...

Syntax:

scanf("format strings",&variableNames);

Example Program

#include <stdio.h>

void main(){

 int i;

 printf("\nEnter any integer value: ");

scanf("%d",&i);

 printf("\nYou have entered %d number",i);

}

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: data inputs, output statements

Unit No :2

Lecture No :L19

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Output:

Enter any integer value: 55

You have entered 55 number

In the above example program, we used the scanf() function to read an integer value from the

keyboard and store it into variable 'i'.

The scanf function also used to read multiple data values of different or same data types.

Consider the following example program...

#include <stdio.h>

void main(){

int i;

float x;

printf("\nEnter one integer followed by one float value : ");

scanf("%d%f",&i, &x);

 printf("\ninteger = %d, float = %f",i, x); }

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Output:

Enter one integer followed by one float value : 20 30.5

integer = 20, float = 30.5

In the above example program, we used the scanf() function to read one integer value and one

float value from the keyboard. Here 'i' is an integer variable so we have used format string %d,

and 'x' is a float variable so we have used format string %f.

The scanf() function returns an integer value equal to the total number of input values read using

scanf function.

Example Program

#include <stdio.h>

void main(){

 int i,a,b;

 float x;

 printf("\nEnter two integers and one float : ");

 i = scanf("%d%d%f",&a, &b, &x);

 printf("\nTotal inputs read : %d",i);

}

Output:

Enter two integers and one float : 10 20 55.5

Total inputs read : 3

getchar() function

The getchar() function is used to read a character from the keyboard and return it to the program.

This function is used to read only single character. To read multiple characters we need to write

multiple times or use a looping statement. Consider the following example program...

#include <stdio.h>

void main(){

 char ch;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 printf("\nEnter any character : ");

 ch = getchar();

 printf("\nYou have entered : %c",ch);

}

Output:

Enter any character : A

You have entered : A

getch() function

The getch() function is similar to getchar function. The getch() function is used to read a

character from the keyboard and return it to the program. This function is used to read only

single character. To read multiple characters we need to write multiple times or use a looping

statement. Consider the following example program...

#include <stdio.h>

void main(){

 char ch;

 printf("\nEnter any character : ");

 ch = getch();

 printf("\nYou have entered : %c",ch);

}

Output:

Enter any character :

You have entered : A

gets() function

The gets() function is used to read a line of string and stores it into character array. The gets()

function reads a line of string or sequence of characters till a newline symbol enters. Consider

the following example program...

#include <stdio.h>

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

void main(){

 char name[30];

 printf("\nEnter your favourite website: ");

 gets(name);

 printf("%s",name);

}

Output:

Enter your favourite website: www.btechsmartclass.com

fscanf() function

The fscanf() function is used with the concept of files. The fscanf() function is used to read data

values from a file. When you want to use fscanf() function the file must be opened in reading

mode.

Output Functions in C:

C programming language provides built-in functions to perform output operation. The output

opearations are used to display data on user screen (output screen) or printer or any file. C

programming language provides the following built-in output functions...

printf()

putchar()

puts()

fprintf()

printf() function

The printf() function is used to print string or data values or combination of string and data

values on the output screen (User screen). The printf() function is built-in function defined in a

header file called "stdio.h". When we want to use printf() function in our program we need to

include the respective header file (stdio.h) using #include statement. The printf() function has

the following syntax...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Syntax:

printf("message to be display!!!");

Example Program

#include <stdio.h>

void main(){

 printf("Hello! Welcome to btechsmartclass!!!");

}

Output:

Hello! Welcome to btechsmartclass!!!

In the above example program, we used the printf() function to print a string on to the output

screen.

The printf() function is also used to display data values. When we want to display data values we

use format string of the data value to be display.

Syntax:

printf("format string",variableName);

Example Program

#include <stdio.h>

void main(){

 int i = 10;

 float x = 5.5;

 printf("%d %f",i, x); }

Output:

10 5.5

In the above example program, we used the printf() function to print data values of variables i

and x on to the output screen. Here i is a integer variable so we have used format string %d and x

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

is a float variable so we have used format string %f.

The printf() function can also used to display string along with data values.

Syntax:

printf("String format string",variableName);

Example Program

#include <stdio.h>

void main(){

 int i = 10;

 float x = 5.5;

 printf("Integer value = %d, float value = %f",i, x);

}

Output:

Integer value = 10, float value = 5.5

In the above program we are displaying string along with data values.

Every function in C programming language must have a return value. The printf() function also

have integer as return value. The printf() function returns an integer value equalent to the total

number of characters it has printed.

Example Program

#include <stdio.h>

void main(){

 int i;

 i = printf("btechsmartclass");

 printf(" is %d number of characters.",i); }

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Output:

btechsmartclass is 15 number of characters.

In the above program, first printf() function printing "btechsmartclass" which is of 15 characters.

So it returns integer value 15 to variable "i". The value of "i" is printed in the second printf()

function.

Formatted printf() function

Generally, when we write multiple printf() statements the result is displayed in single line

because the printf() function displays the output in a single line. Consider the following example

program...

#include <stdio.h>

void main(){

 printf("Welcome to ");

 printf("btechsmartclass ");

 printf("the perfect website for learning");

}

Output:

Welcome to btechsmartclass the perfect website for learning

In the above program, there are 3 printf() statements written in different lines but the output is

displayed in single line only.

To display the output in different lines or as we wish, we use some special characters

called escape sequences. Escape sequences are special characters with special functionality used

in printf() function to format the output according to the user requirement. In C programming

language, we have the following escape sequences...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 Escape Sequence

\n

 Meaning

New line

\t Horizontal Tab

\v Vertical Tab

\a Beep sound

\b Backspace

\\ Backward slash

\? Question mark

\' Single quotation mark

\" Double quotation mark

Consider the following example program...

#include <stdio.h>

void main(){

 printf("Welcome to\n");

 printf("btechsmartclass\n");

 printf("the perfect website for learning");

}

Output:

Welcome to

btechsmartclass

the perfect website for learning

putchar() function

The putchar() function is used to display single character on the output screen. The putchar()

functions prints the character which is passed as parameter to it and returns the same character as

return value. This function is used to print only single charater. To print multiple characters we

need to write multiple times or use a looping statement. Consiider the following example

program...

#include <stdio.h>

void main(){

 char ch = 'A';

 putchar(ch);

}

Output:

A

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

puts() function

The puts() function is used to display string on the output screen. The puts() functions prints a

string or sequence of characters till the newline. Consiider the following example program...

#include <stdio.h>

void main(){

 char name[30];

 printf("\nEnter your favourite website: ");

 gets(name);

 puts(name);

}

Output:

Enter your favourite website: www.btechsmartclass.com

www.btechsmartclass.com

fprintf() function

The fprintf() function is used with the concept of files. The fprintf() function is used to print a

line into the file. When you want to use fprintf() function the file must be opened in writting

mode.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Operators:

An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations. Operators are used in programs to manipulate data and variables.

 C operators can be classified into a number of categories, they are

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise Operators

8. Special operators

1. Arithmetic Operators:

 The arithmetic operators are the symbols that are used to perform basic mathematical

operations like addition, subtraction, multiplication, division and percentage modulo. The

following table provides information about arithmetic operators.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 5 * 10 = 50

/ Division 10 / 5 = 2

% Remainder of Division 5 % 2 = 1

The addition operator can be used with numerical data types and character data type. When it is

used with numerical values, it performs mathematical addition and when it is used with character

data type values, it performs concatination (appending).

The remainder of division operator is used with integer data type only.

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Operators

Unit No :2

Lecture No :L20

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

2.Relational Operators :

The relational operators are the symbols that are used to compare two values. That

means, the relational operators are used to check the relationship between two values. Every

relational operator has two results TRUE or FALSE. In simple words, the relational operators are

used to define conditions in a program. The following table provides information about relational

operators.

Operator Meaning Example

< Returns TRUE if first value is smaller than second value otherwise

returns FALSE

10 < 5 is

FALSE

> Returns TRUE if first value is larger than second value otherwise

returns FALSE

10 > 5 is

TRUE

<= Returns TRUE if first value is smaller than or equal to second value

otherwise returns FALSE

10 <= 5 is

FALSE

>= Returns TRUE if first value is larger than or equal to second value

otherwise returns FALSE

10 >= 5 is

TRUE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is

FALSE

!= Returns TRUE if both values are not equal otherwise returns

FALSE

10 != 5 is

TRUE

3. Logical Operators:

The logical operators are the symbols that are used to combine multiple conditions into

one condition. The following table provides information about logical operators.

Operator Meaning Example

&& Logical AND - Returns TRUE if all conditions are TRUE

otherwise returns FALSE

10 < 5 && 12 > 10 is

FALSE

|| Logical OR - Returns FALSE if all conditions are FALSE

otherwise returns TRUE

10 < 5 || 12 > 10 is

TRUE

! Logical NOT - Returns TRUE if condition is FLASE and

returns FALSE if it is TRUE

!(10 < 5 && 12 > 10)

is TRUE

Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is

FALSE then complete condition becomes FALSE.

Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is

TRUE then complete condition becomes TRUE.

4. Assignment Operators :

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The assignment operators are used to assign right hand side value (Rvalue) to the left

hand side variable (Lvalue). The assignment operator is used in different variants along with

arithmetic operators. The following table describes all the assignment operators in C

programming language.

Operator Meaning Example

= Assign the right hand side value to left hand side variable A = 15

+= Add both left and right hand side values and store the result into left

hand side variable

A += 10

⇒
A=A+10

-= Subtract right hand side value from left hand side variable value and

store the result into left hand side variable

A -= B

⇒ A=A-B

*= Multiply right hand side value with left hand side variable value and

store the result into left hand side variable

A *= B

⇒
A=A*B

/= Divide left hand side variable value with right hand side variable value

and store the result into left hand side variable

A /= B

⇒ A=A/B

%= Divide left hand side variable value with right hand side variable value

and store the remainder into left hand side variable

A %= B

⇒
A=A%B

5.Increment & Decrement Operators:

The increment and decrement operators are called as unary operators because, both needs

only one operand. The increment operators adds one to the existing value of the operand and the

decrement operator subtracts one from the existing value of the operand. The following table

provides information about increment and decrement operators.

Operator Meaning Example

++ Increment - Adds one to existing value int a = 5;

a++; ⇒ a = 6

-- Decrement - Subtracts one from existing value int a = 5;

a--; ⇒ a = 4

The increment and decrement operators are used infront of the operand (++a) or after the

operand (a++). If it is used infront of the operand, we call it as pre-increment or pre-

decrement and if it is used after the operand, we call it as post-increment or post-decrement.

Pre-Increment or Pre-Decrement

In case of pre-increment, the value of the variable is increased by one before the

expression evaluation. In case of pre-decrement, the value of the variable is decreased by one

before the expression evaluation. That means, when we use pre increment or pre decrement, first

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

the value of the variable is incremented or decremented by one, then modified value is used in

the expression evaluation.

Example:

#include <stdio.h>

void main()

{

 int i = 5,j;

 j = ++i; // Pre-Increment

 printf("i = %d, j = %d",i,j);

}

Output:

i = 6, j = 6

Post-Increment or Post-Decrement

In case of post-increment, the value of the variable is increased by one after the

expression evaluation. In case of post-decrement, the value of the variable is decreased by one

after the expression evaluation. That means, when we use post-increment or post-decrement, first

the expression is evaluated with existing value, then the value of the variable is incremented or

decremented by one.

Example

#include <stdio.h>

void main()

{

 int i = 5,j;

 j = i++; // Post-Increment

 printf("i = %d, j = %d",i,j);

}

Output:

i = 6, j = 5

6.Conditional Operator (?:)

The conditional operator is also called as ternary operator because it requires three

operands. This operator is used for decision making. In this operator, first we verify a condition,

then we perform one operation out of the two operations based on the condition result. If the

condition is TRUE the first option is performed, if the condition is FALSE the second option is

performed. The conditional operator is used with the following syntax...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Condition ? TRUE Part : FALSE Part ;

Example:

A = (10<15) ? 100 : 200 ; ⇒ A value is 100

7.Bitwise Operators:

The bitwise operators are used to perform bit level operations in c programming

language. When we use the bitwise operators, the operations are performed based on the binary

values. The following table describes all the bitwise operators in C programming language.

Let us consider two variables A and B as A = 25 (11001) and B = 20 (10100)

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1 otherwise it is 0 A & B

⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0 otherwise it is 1 A | B

⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are same otherwise it

is 1

A ^ B

⇒ 13 (01101)

~ the result of Bitwise once complement is nagation of the bit

(Flipping)

~A

⇒ 6 (00110)

<< the Bitwise left shift operator shifts all the bits to the left by

specified number of positions

A<<2

⇒ 100

(1100100)

>> the Bitwise right shift operator shifts all the bits to the right by

specified number of positions

A>>2

⇒ 6 (00110)

8.Special Operators (sizeof, pointer, comma, dot etc.)

The following are the special operators in c programming language.

sizeof operator

This operator is used to find the size of the memory (in bytes) allocated for a variable. This

operator is used with the following syntax...

sizeof(variableName);

Example

sizeof(A); ⇒ result is 2 if A is an integer

Pointer operator (*)

This operator is used to define pointer variables in c programming language.

Comma operator (,)

This operator is used to separate variables while they are declaring, separate the expressions in

function calls etc..

Dot operator (.)

This operator is used to access members of structure or union.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Operator Precedence and Associativity

Explain Operator Precedence

Operator precedence is used to determine the order of operators evaluated in an expression. In

c programming language every operator has precedence (priority). When there is more than one

operator in an expression the operator with higher precedence is evaluated first and the operator

with least precedence is evaluated last.

Discuss about Operator Associativity

Operator associativity is used to determine the order of operators with equal precedence

evaluated in an expression. In c programming language, when an expression contains multiple

operators with equal precedence, we use associativity to determine the order of evaluation of

those operators.

In c programming language the operator precedence and associativity is as shown in the

following table...

Precedence Operator Operator Meaning Associativity

1 ()

[]

->

.

function call

array reference

structure member access

structure member access

Left to Right

2 !

~

+

-

++

--

&

*

sizeof

negation

1's complement

Unary plus

Unary minus

increment operator

decrement operator

address of operator

pointer

returns size of a variable

Right to Left

Faculty Name: N.Thulasi Chitra

Subject :PPS

Topic: precedence and
associativity

Unit No :2

Lecture No :L21

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

(type) type conversion

3 *

/

%

multiplication

division

remainder

Left to Right

4 +

-

addition

subtraction

Left to Right

5 <<

>>

left shift

right shift

Left to Right

6 <

<=

>

>=

less than

less than or equal to

greater than

greater than or equal to

Left to Right

7 ==

!=

equal to

not equal to

Left to Right

8 & bitwise AND Left to Right

9 ^ bitwise EXCLUSIVE OR Left to Right

10 | bitwise OR Left to Right

11 && logical AND Left to Right

12 || logical OR Left to Right

13 ?: conditional operator Left to Right

14 =

*=

/=

%=

+=

-=

&=

^=

|=

<<=

>>=

assignment

assign multiplication

assign division

assign remainder

assign additon

assign subtraction

assign bitwise AND

assign bitwise XOR

assign bitwise OR

assign left shift

assign right shift

Right to Left

15 , separator Left to Right

In the above table, the operator precedence decrease from top to bottom and increase from

bottom to top.

http://btechsmartclass.com/CP/c-input-operations.htm
http://btechsmartclass.com/CP/c-input-operations.htm

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Expressions:

Define an Expression

In any programming language, if we want to perform any calculation or to frame any

condition etc., we use a set of symbols to perform the task. These set of symbols makes an

expression.

In C programming language, an expression is defined as follows...

An expression is a collection of operators and operands that represents a specific value.

In the above definition, operator is a symbol which performs tasks like arithmetic

operations, logical operations and conditional operations etc.,

Operands are the values on which the operators perform the task. Here operand can be a direct

value or variable or address of memory location.

Expression Types in C

In C programming language, expressions are divided into THREE types. They are as follows...

1.Infix Expression

2.Postfix Expression

3.Prefix Expression

The above classification is based on the operator position in the expression.

1.Infix Expression

The expression in which operator is used between operands is called as infix expression.

The infix expression has the following general structure...

Operand1 Operator Operand2

Example

Faculty Name: N.Thulasi Chitra

Subject :PPS

Topic: evaluation of expressions

Unit No :2

Lecture No :L22

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

2.Postfix Expression

The expression in which operator is used after operands is called as postfix expression.

The postfix expression has the following general structure...

Operand1 Operand2 Operator

Example:

3.Prefix Expression

The expression in which operator is used before operands is called as prefix expression.

The prefix expression has the following general structure...

Operator Operand1 Operand2

Example:

Expression Evaluation in C

In C programming language, expression is evaluated based on the operator precedence and

associativity. When there are multiple operators in an expression, they are evaluated according to

their pr

ecedence and associativity. The operator with higher precedence is evaluated first and the

operator with least precedence is evaluated last.

An expression is evaluated based on the precedence and associativity of the operators in

that expression.

To understand expression evaluation in c, let us consider the following simple example

expression...

 10 + 4 * 3 / 2

In the above expression there are three operators +, * and /. Among these three operators,

both multiplication and division have same higher precedence and addition has lower

precedence. So, according to the operator precedence both multiplication and division are

evaluated first and then addition is evaluated. As multiplication and division have same

precedence they are evaluated based on the associativity. Here, the associativity of multiplication

and division is left to right. So, multiplication is performed first, then division and finally

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

addition. So, the above expression is evaluated in the order of * / and +. It is evaluated as

follows...

4 * 3 ====> 12

12 / 2 ===> 6

10 + 6 ===> 16

The expression is evaluated to 16.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Type Conversions

In a programming language, the expression contains data values of same datatype or

different datatypes. When the expression contains similar datatype values then it is evaluated

without any problem. But if the expression contains two or more different datatype values then

they must be converted to single datatype of destination datatype. Here, destination is the

location where the final result of that expression is stored. For example,the multiplication of an

integer data value with float data value and storing the result into a float variable. In this case, the

integer value must be converted to float value so that the final result is a float datatype value.

In c programming language, the data conversion is performed in two different methods as

follows.

Type Conversion

Type Casting

Type Conversion

The type conversion is the process of converting a data value from one datatype to

another datatype automatically by the compiler. Sometimes type conversion is also called

as implicit type conversion. The implicit type conversion is automatically performed by the

compiler.

For example, in c programming language, when we assign an integer value to a float variable the

integer value automically gets converted to float value by adding decimal value 0. And when a

float value is assigned to an integer variable the float value automatically gets converted to

integer value by removing the decimal value. To understand more about type conversion observe

the following...

int i = 10 ;

float x = 15.5 ;

char ch = 'A' ;

i = x ; =======> x value 15.5 is converted as 15 and assigned to variable i

x = i ; =======> Here i value 10 is converted as 10.000000 and assigned to variable x

i = ch ; =======> Here the ASCII value of A (65) is assigned to i

Example Program

#include <stdio.h>

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Type Conversions In
Expresssions

Unit No :2

Lecture No :L23

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

void main()

{

 int i = 95 ;

 float x = 90.99 ;

 char ch = 'A' ;

 i = x ;

 printf("i value is %d\n",i);

 x = i ;

 printf("x value is %f\n",x);

 i = ch ;

 printf("i value is %d\n",i);

}

Output:

i value is 90

x value is 90.000000

i value is 65value is 6

In the above program, we assign i = x, i.e., float variable value is assigned to integer

variable. Here, the compiler automatically converts the float value (90.99) into integer value (90)

by removing the decimal part of the float value (90.99) and then it is assigned to variable i.

Similarly when we assign x = i, the integer value (90) gets converted to float value (90.000000)

by adding zero as decimal part.

Type Casting

Type casting is also called as explicit type conversion. Compiler converts data from one

datatype to another datatype implicitly. When compiler converts implicitly, there may be a data

loss.In such case, we convert the data from one datatype to another datatype using explicit type

conversion. To perform this we use the unary cast operator. To convert data from one type to

another type we specify the target datatype in paranthesis as a prefix to the data value that has to

be converted. The general syntax of type casting is as follows...

(TargetDatatype) DataValue

Example

int totalMarks = 450, maxMarks = 600 ;

float average ;

average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer data values. When we

perform totalMarks / maxMarks the result is a float value, but the destination (average) datatype

is float. So we use type casting to convert totalMarks and maxMarks into float datatype.

Example Program

#include <stdio.h>

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

void main(){

 int a, b, c ;

 float avg ;

 printf("Enter any three integer values : ") ;

 scanf("%d%d%d", &a, &b, &c) ;

 avg = (a + b + c) / 3 ;

 printf("avg before casting = %f\n",avg);

 avg = (float)(a + b + c) / 3 ;

 printf("avg after casting = %f\n",avg);

}

Output:

Enter any three integer values : 5 3 2

avg before casting = 3

avg after casting = 3.333333

E

nter any three integer values : 5 3 2

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Control structures: Decision statements; if and switch statement; Loop control statements:

while, for and do while loops, jump statements, break, continue, goto statements.

Decision Making statements:

In c programming language, the program execution flow is, line by line from top to

bottom. That means the c program is executed line by line from the main method. But this type

of execution flow may not be suitable for all the program solutions. Sometimes, we make some

decisions or we may skip the execution of one or more lines of code. Consider a situation, where

we write a program to check whether a student has passed or failed in a particular subject. Here,

we need to check whether the marks are greater than the pass marks or not. If marks are greater,

then we take the decision that the student has passed otherwise failed. To solve such kind of

problems in c we use the statements called decision making statements.

Decision making statements are the statements that are used to verify a given condition and

decides whether a block of statements gets executed or not based on the condition result.

In c programming language, there are two decision making statements they are as follows...

1. if statement

2. switch statement

1. if statement in c

In c, if statement is used to make decisions based on a condition. The if statement verifies

the given condition and decides whether a block of statements are executed or not based on the

condition result. In c, if statement is classified into four types as follows...

1. Simple if statement

2. if - else statement

3. Nested if statement

4. if-else-if statement (if-else ladder)

Unit No :2

Lecture No :L24

Book Reference:T1

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Control Structures: if

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

1. Simple if statement

Simple if statement is used to verify the given condition and executes the block of

statements based on the condition result. The simple if statement evaluates specified condition. If

it is TRUE, it executes the next statement or block of statements. If the condition is FALSE, it

skips the execution of the next statement or block of statements. The general syntax and

execution flow of the simple if statement is as follows...

Simple if statement is used when we have only one option that is executed or skipped based on a

condition.

Example Program | Test whether given number is divisible by 5.
#include <stdio.h>

#include<conio.h>

void main(){

 int n ;

 clrscr() ;

 printf("Enter any integer number: ") ;

 scanf("%d", &n) ;

 if (n%5 == 0)

 printf("Given number is divisible by 5\n") ;
 printf("statement does not belong to if!!!") ;

}

Output 1:

Enter any integer number: 100

Given number is divisible by 5

statement does not belong to if!!!

Output 2:

Enter any integer number: 99

statement does not belong to if!!!

2. if - else statement

The if - else statement is used to verify the given condition and executes only one out of the two

blocks of statements based on the condition result. The if-else statement evaluates the specified

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

condition. If it is TRUE, it executes a block of statements (True block). If the condition is

FALSE, it executes another block of statements (False block). The general syntax and execution

flow of the if-else statement is as follows...

The if-else statement is used when we have two options and only one option has to be executed

based on a condition result (TRUE or FALSE).

Example Program | Test whether given number is even or odd.
#include <stdio.h>

#include<conio.h>

void main(){

 int n ;

 clrscr() ;
 printf("Enter any integer number: ") ;

 scanf("%d", &n) ;

 if (n%2 == 0)

 printf("Given number is EVEN\n") ;

 else

 printf("Given number is ODD\n") ;

}

Output 1:

Enter any integer number: 100

Given number is EVEN

Output 2:

Enter any integer number: 99

Given number is ODD

3. Nested if statement

Writing a if statement inside another if statement is called nested if statement. The general syntax

of the nested if statement is as follows...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The nested if statement can be defined using any combination of simple if & if-else statements.

The flow of control using Nested if...else statement is determined as follows

Whenever nested if…else statement is encountered, first <condition1> is tested.

It returns either true or false.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

If condition1 (or outer condition) is false, then the control transfers to else-body (if

exists) by skipping if-body.

If condition1 (or outer condition) is true, then condition2 (or inner condition) is tested.

If the condition2 is true, if-body gets executed. Otherwise, the else-body that is inside of if

statement gets executed.

Example Program | Test whether given number is even or odd if it is below 100.
#include <stdio.h>

#include<conio.h>

void main(){

 int n ;

 clrscr() ;

 printf("Enter any integer number: ") ;

 scanf("%d", &n) ;
 if (n < 100)

 {

 printf("Given number is below 100\n") ;

 if(n%2 == 0)

 printf("And it is EVEN") ;

 else

 printf("And it is ODD") ;

 }

 else

 printf("Given number is not below 100") ;

}

Output 1:

Enter any integer number: 55

Given number is below 100

And it is ODD

Output 2:

Enter any integer number: 999

Given number is not below 100

4. if - else - if statement (if-else ladder)

Writing a if statement inside else of a if statement is called if - else - if statement. The general

syntax of the if-else-if statement is as follows...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The if-else-if statement can be defined using any combination of simple if & if-else statements.

The flow of control using else--- if ladder statement is determined as follows:

Whenever else if ladder is encountered, condition1 is tested first. If it is true, the

statement 1 gets executed. After then the control transfers to stmt-x.
If condition1 is false, then condition2 is tested. If condition2 is false, the other

conditions are tested. If all are false, the default stmt at the end gets executed. After then

the control transfers to stmt-x.

If any one of all conditions is true, then the body associated with it gets executed. After

then the control transfers to stmt-x.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Example Program | Find the largest of three numbers.
#include <stdio.h>
#include<conio.h>

void main(){

 int a, b, c ;

 clrscr() ;

 printf("Enter any three integer numbers: ") ;

 scanf("%d%d%d", &a, &b, &c) ;

 if(a>=b && a>=c)

 printf("%d is the largest number", a) ;

 else if (b>=a && b>=c)
 printf("%d is the largest number", b) ;

 else

 printf("%d is the largest number", c) ;

}

Output 1:

Enter any three integer numbers: 55 60 20

60 is the largest number

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use conditional control statement like if statement, condition might be an expression

evaluated to a numerical value, a variable or a direct numerical value. If the expression value or

direct value is zero the conditon becomes FALSE otherwise becomes TRUE.

To understand more consider the following statements...

if(10) - is TRUE

if(x) - is FALSE if x value is zero otherwise TRUE

if(a+b) - is FALSE if a+b value is zero otherwise TRUE

if(a = 99) - is TRUE because a value is non-zero

if(10, 5, 0) - is FALSE because it considers last value

if(0) - is FALSE

if(a=10, b=15, c=0) - is FALSE because last value is zero

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Switch statement:

Consider a situation in which we have more number of options out of which we need to select

only one option that is to be executed. Such kind of problems can be solved using nested

if statement. But as the number of options increases, the complexity of the program also gets

increased. This type of problems can be solved very easily using switch statement. Using switch

statement, one can select only one option from more number of options very easily. In switch

statement, we provide a value that is to be compared with a value associated with each option.

Whenever the given value matches with the value associated with an option, the execution starts

from that option. In switch statement every option is defined as a case.

The switch statement has the following syntax and execution flow diagram...

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Switch Statement

Unit No :2

Lecture No :L25

Book Reference:T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The switch statement contains one or more number of cases and each case has a value associated

with it. At first switch statement compares the first case value with the switchValue, if it gets

matched the execution starts from the first case. If it doesn't match the switch statement

compares the second case value with the switchValue and if it is matched the execution starts

from the second case. This process continues until it finds a match. If no case value matches with

the switchValue specified in the switch statement, then a special case called default is executed.

When a case value matches with the switchValue, the execution starts from that particular case.

This execution flow continues with next case statements also. To avoid this, we use "break"

statement at the end of each case. That means the break statement is used to terminate the switch

statement. However it is optional.

Example Program | Display pressed digit in words.
#include <stdio.h>

#include<conio.h>

void main(){
 int n ;

 clrscr() ;

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 printf("Enter any digit: ") ;

 scanf("%d", &n) ;

 switch(n)

 {

 case 0: printf("ZERO") ;
 break ;

 case 1: printf("ONE") ;

 break ;

 case 2: printf("TWO") ;

 break ;

 case 3: printf("THREE") ;

 break ;

 case 4: printf("FOUR") ;

 break ;

 case 5: printf("FIVE") ;

 break ;

 case 6: printf("SIX") ;
 break ;

 case 7: printf("SEVEN") ;

 break ;

 case 8: printf("EIGHT") ;

 break ;

 case 9: printf("NINE") ;

 break ;

 default: printf("Not a Digit") ;

 }

 getch() ;

}

Output 1:

Enter any digit: 5

FIVE

Output 2:

Enter any digit: 15

Not a Digit

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use switch statement, we must follow the following...

Both switch and case are keywords so they must be used only in lower case letters.

The data type of case value and the value specified in switch statement must be same.

switch and case values must be either integer or character but not float or string.

A switch statement can contain any number of cases.

The keyword case and its value must be separated with a white space.

The case values need not be defined in sequence, they can be in any order.

The default case is optional and it can be defined anywhere inside the switch statement.

The switch value might be a direct value, a variable or an expression.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Loop control statements:

Consider a situation in which we execute a single statement or block of statements

repeatedly for required number of times. Such kind of problems can be solved

using looping statements in C. For example, assume a situation where we print a message for

100 times. If we want to perform that task without using looping statements, we have to either

write 100 printf statements or we have to write the same message for 100 times in a single printf

statement. Both are complex methods. The same task can be performed very easily using looping

statements.

The looping statements are used to execute a single statement or block of statements repeatedly

until the given condition is FALSE.

C language provides three looping statements...

1.while statement

2.do-while statement

3.for statement

while Statement

1. While statement:

The while statement is used to execute a single statement or block of statements

repeatedly as long as the given condition is TRUE. The while statement is also known as Entry

control looping statement. The while statement has the following syntax...

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Loop Control Statements
:While

Unit No :2

Lecture No :L26

Book Reference: T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The while statement has the following execution flow

diagram...

At first, the given condition is evaluated. If the condition is TRUE, the single statement

or block of statements gets executed. Once the execution gets completed the condition is

evaluated again. If it is TRUE, again the same statements gets executed. The same process is

repeated until the condition is evaluated to FALSE. Whenever the condition is evaluated to

FALSE, the execution control moves out of the while block.

Example Program | Program to display even numbers upto 10.
#include <stdio.h>

#include<conio.h>

void main(){
 int n = 0;

 clrscr() ;

 printf("Even numbers upto 10\n");

 while(n <= 10)

 {

 if(n%2 == 0)

 printf("%d\t", n) ;

 n++ ;

 }

 getch() ;
}

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Output 1:

Even numbers upto 10

0 2 4 6 8 10

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use while statement, we must follow the following...

while is a keyword so it must be used only in lower case letters.

If the condition contains variable, it must be assigned a value before it is used.

The value of the variable used in condition must be modified according to the requirement inside

the while block.

In while statement, the condition may be a direct integer value, a variable or a condition.

A while statement can be an empty statement.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

2. do-While statement:

The do-while statement is used to execute a single statement or block of statements repeatedly as

long as given the condition is TRUE. The do-while statement is also known as Exit control

looping statement. The do-while statement has the following syntax...

The do-while statement has the following execution flow diagram.

Faculty Name: N.Thulasi Chitra

Subject :PPS
Topic: Loop Control Statements :
Do-While ,for

Unit No :2

Lecture No :L27

Book Reference: T1

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

At first, the single statement or block of statements which are defined in do block are

executed. After execution of do block, the given condition gets evaluated. If the condition is

evaluated to TRUE, the single statement or block of statements of do block are executed again.

Once the execution gets completed again the condition is evaluated. If it is TRUE, again the

same statements are executed. The same process is repeated until the condition is evaluated to

FALSE. Whenever the condition is evaluated to FALSE, the execution control moves out of the

while block.

Example Program | Program to display even numbers upto 10.
#include <stdio.h>

#include<conio.h>

void main(){

 int n = 0;

 clrscr() ;

 printf("Even numbers upto 10\n");

 do

 {

 if(n%2 == 0)

 printf("%d\t", n) ;

 n++ ;

 }while(n <= 10) ;

 getch() ;

}

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Output 1:

Even numbers upto 10

0 2 4 6 8 10

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use do-while statement, we must follow the following...

Both do and while are keywords so they must be used only in lower case letters.

If the condition contains variable, it must be assigned a value before it is used.

The value of the variable used in condition must be modified according to the requirement inside

the do block.

In do-while statement the condition may be, a direct integer value, a variable or a condition.

A do-while statement can be an empty statement.

In do-while, the block of statements are executed at least once.

3.for statement:

The for statement is used to execute a single statement or a block of statements repeatedly as

long as the given condition is TRUE. The for statement has the following syntax and execution

flow diagram...

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

At first, the for statement executes initialization followed by condition evaluation. If the

condition is evaluated to TRUE, the single statement or block of statements of for statement are

executed. Once the execution gets completed, the modification statement is executed and again

the condition is evaluated. If it is TRUE, again the same statements are executed. The same

process is repeated until the condition is evaluated to FALSE. Whenever the condition is

evaluated to FALSE, the execution control moves out of the for block.

Example Program | Program to display even numbers upto 10.
#include <stdio.h>

#include<conio.h>

void main(){

 int n ;

 clrscr() ;

 printf("Even numbers upto 10\n");

 for(n = 0 ; n <= 10 ; n++)

 {

 if(n%2 == 0)

 printf("%d\t", n) ;

 }

 getch() ;

}

Output 1:

Even numbers upto 10

0 2 4 6 8 10

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use for statement, we must follow the following.

for is a keyword so it must be used only in lower case letters.

Every for statement must be provided with initialization, condition and modification (They can

be empty but must be separated with ";")

Ex: for (; ;) or for (; condition ; modification) or for (; condition ;)

In for statement, the condition may be a direct integer value, a variable or a condition.

The for statement can be an empty statement.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Break,continue and goto statements:

In c, there are control statements which does not need any condition to control the program

execution flow. These control statements are called as unconditional control statements. C

programming language provides the following unconditional control statements...

1.break

2.continue

3.goto

The above three statements does not need any condition to control the program execution flow.

1.break statement:

In C, the break statement is used to perform the following two things.

break statement is used to terminate switch case statement

break statement is also used to terminate looping statements like while, do-while and for.

When a break statement is encountered inside the switch case statement, the execution control

moves out of the switch statement directly. For example consider the following program.

Example Program | Program to perform all arithmetic operations using switch statement.

#include <stdio.h>

#include<conio.h>

void main(){

 int number1, number2, result ;

 char operator;

 clrscr() ;

 printf("Enter any two integer numbers: ") ;

 scanf("%d%d", &number1, &number2) ;

 printf("Please enter any arithmetic operator: ");

 operator = getchar();

 switch(operator)

 {

 case '+': result = number1 + number2 ;

 printf("Addition = %d", result) ;

 break;

 case '-': result = number1 - number2 ;

 printf("Subtraction = %d", result) ;

 break;

 case '*': result = number1 * number2 ;

Faculty Name: N.Thulasi Chitra

Subject : PPS
Topic: Braeak, Jump , Continue ,
goto statement

s

Unit No :2

Lecture No :L28

Book Reference: T1

http://btechsmartclass.com/CP/c-do-while-statement.htm

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 printf("Multiplication = %d", result) ;

 break;

 case '/': result = number1 / number2 ;

 printf("Division = %d", result) ;

 break;

 case '%': result = number1 % number2 ;

 printf("Remainder = %d", result) ;

 break;

 default: printf("\nWrong selection!!!") ;

 }

 getch() ;

}

Output

Enter any two integer numbers: 50 30

Please enter any arithmetic operator: *

Multiplication = 1500 any two integer numbers: 50 30

When the break statement is encountered inside the looping statement, the execution control

moves out of the looping statements. The break statement execution is as shown in the following

figure.

For example, consider the following example program...

Example Program for break statement.

#include <stdio.h>

#include<conio.h>

void main(){

 char ch ;

 clrscr() ;

 do

 {

 printf("Enter Y / N : ") ;

 scanf("%c", &ch) ;

 if(ch == 'Y')

 {

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

 printf("Okay!!! Repeat again !!!\n") ;

 }

 else

 {

 printf("Okay !!! Breaking the loop !!!") ;

 break ;

 }

 } while(1) ;

 getch() ;

}

Output:

Enter Y / N : Y

Okay!!! Repeat again !!!

Enter Y / N : Y

Okay!!! Repeat again !!!

Enter Y / N : N

Okay !!! Breaking the loop !!!

2.Continue statement:

The continue statement is used to move the program execution control to the beginning of

looping statement. When continue statement is encountered in a looping statement, the

execution control skips the rest of the statements in the looping block and directly jumps to the

beginning of the loop. The continue statement can be used with looping statements like while,

do-while and for.

When we use continue statement with while and do-while statements the execution control

directly jumps to the condition. When we use continue statement with for statement the

execution control directly jumps to the modification portion (increment / decrement / any

modification) of the for loop. The continue statement execution is as shown in the following

figure.

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

Example Program | Program to illustrate continue statement.
#include <stdio.h>

#include<conio.h>

void main(){

 int number ;

 clrscr() ;

 while(1)

 {

 printf("Enter any integer number: ") ;

 scanf("%d", &number) ;

 if(number%2 == 0)

 {

 printf("Entered number is EVEN!!! Try another number!!!\n") ;

 continue ;

 }

 else

 {

 printf("You have entered ODD number!!! Bye!!!") ;

 exit(0) ;

 }

 }

 getch() ;

}

Output

Enter any integer numbers: 50

Entered number is EVEN!!! Try another number!!!

Enter any integer numbers: 100

Entered number is EVEN!!! Try another number!!!

Enter any integer numbers: 10

Entered number is EVEN!!! Try another number!!!

Enter any integer number: 15

You have entered ODD number!!! Bye!!!

3.goto statement:

MLR Institute of Technology
Laxma Reddy Avenue, Dundigal, Quthbullapur (M), Hyderabad – 500 043

The goto statement is used to jump from one line to another line in the program.

Using goto statement we can jump from top to bottom or bottom to top. To jump from one line

to another line, the goto statement requires a lable. Lable is a name given to the instruction or

line in the program. When we use goto statement in the program, the execution control directly

jumps to the line with specified lable.

Example Program for goto statement.
#include <stdio.h>

#include<conio.h>

void main(){

 clrscr() ;

 printf("We are at first printf statement!!!\n") ;

 goto last ;

 printf("We are at second printf statement!!!\n") ;

 printf("We are at third printf statement!!!\n") ;

 last: printf("We are at last printf statement!!!\n") ;

 getch() ;

}

Output

We are at first printf statement!!!

We are at last printf statement!!!

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use break, continue and goto statements, we must follow the following...

 The break is a keyword so it must be used only in lower case letters.

 The break statement can not be used with if statement.

 The break statement can be used only in switch case and looping statements.

 The break statement can be used with if statement, only if that if statement is written

inside the switch case or looping statements.

 The continue is a keyword so it must be used only in lower case letters.

 The continue statement is used only within looping statements.

 The continue statement can be used with if statement, only if that if statement is written

inside the looping statements.

 The goto is a keyword so it must be used only in lower case letters.

 The goto statement must requires a lable.

 The goto statement can be used with any statement like if, switch, while, do-while and

for etc,.

Structures,Unions and Files
STRUCTURES:
It is a deriVed data type. It is a collection of elements of heterogenous data type(different).
Definition: It is heterogeneous collection of elements of different data elements under a
single name.

Declaration:
Two types
We can declare structure in two ways:
Tagged structure
Typedef structure
Tagged structure:
It starts with a keyword ‘struct’
Syntax:
struct structurename
{
datatype Var1;
datatype Var2;//structure mem
…….;
};
Eg: struct student
{
char name[50]; int rollno;
char gender; char grade; float m1,m2,m3; int age;
};

Declaration of structure Variable:
The Variables of the structure can be declared inside the main function
or after structure declaration.

Syntax:
struct structurename
{
datatype Variable1;
datatype Variable2;

…..
……
};
int main()
{
struct structurename Variables;//Variable
}

Example:
struct student
{
char name[50]; int age;
float per;
};
int main()
{
struct student s1;
}

Accessing the members of structures:
The members of structures can be accessed by the help of dot operator.
This dot operator is also called as member operator.

Note:
If the structure Variables are pointers then the structure members can be
accessed by arrow operator.(->) It is also called as indirect selection operator.
Ex:
s1.name; s1.age; s1.per;

//write a c program to read and print the details of a single student using
structures.#include<stdio.h>
#include<stdlib.h>
struct student
{
char name[30];
int rollno;
int m1,m2,m3; float aVg;
};
int main()
{
struct student s1; printf("Enter details:\n");
scanf("%s%d%d%d%d",s1.name,&s1.rollno,&s1.m1,&s1.m2,&s1.m3);
s1.aVg=(s1.m1+s1.m2+s1.m3)/3;
printf("%s\n%d\n%f\n",s1.name,s1.rollno,s1.aVg);
}Output:
Bidya 104
95
96
98
95.00000
Bidya
104
95.00000

//write a c program to read and print the details of two students using structures.
#include<stdio.h>
#include<stdlib.h>
struct student
{
char name[50]; int age;
int rollno;
}s1,s2;
int main()
{
printf("enter student1 details:");
scanf("%s%d%d",s1.name,&s1.age,&s1.rollno);
printf("enter student2 details:");
scanf("%s%d%d",s2.name,&s2.age,&s2.rollno);
printf("%s %d %d\n",s1.name,s1.age,s1.rollno);
printf("%s %d %d\n",s2.name,s2.age,s2.rollno);
}
Output:
Enter student1 details:
Bidya 20
104
Pinky 20
110
Bidya 20 104
Pinky 20 110

//write a c program to read the details of n students(name,rollno,three sub marks) and calculate aVg and
grade of each student#include<stdio.h>
#include<stdlib.h>
struct student
{
char name[50]; int rollno;
int m1,m2,m3; float aVg; char grade;
};
struct student s[100]; int main()
{
int n,i;
printf("enter no of students:"); scanf("%d",&n);
for(i=1;i<n;i++)
{
scanf("%s%d%d%d%d",s[i].name,&s[i].rollno,&s[i].m1,&s[i].m2,&s[i].m3);
s[i].aVg=(float)(s[i].m1+s[i].m2+s[i].m3)/3;
if(s[i].aVg>=75)
s[i].grade='A';
else if(s[i].aVg>=50)
s[i].grade='B';

else s[i].grade='C';
}
for(i=1;i<n;i++)
{
printf("name=%s\n",s[i].name);
printf("rollno=%d",s[i].rollno);
printf("aVerage=%f\n",s[i].aVg);
printf("grade=%c\n",s[i].grade);
}
}

Intialization of structure:
The structure can be initialized in two ways:
static
Dynamic
i) static:
struct structurename
{
//member declaration
};
struct structurename Variable={Value};

example:
struct emp
{
char name[50]; int id;
float salary;
};
struct emp e1;
int main()
{
emp e1={“raju”,”104”,54000};
printf(“%s%d%f”,e1.name,e1.id,e1.salary);
}

2) type def structure:
We can also declare a structure by using typedef keyword. It is two ways
different from tagged structure.
We use type def as keyword as the beginning of the structure. The structure is
giVen at the end of closing bracket.
Syntax:
typedef struct
{
datatype Var1;
datatype Var2;
datatype Var3;
…..
} structurename;
Eg:
typedef struct
{
char name[80]; float m1,m2,m3; int age;
char gender; char grade;
}student;

Variable declaration in type def:
Syntax:
typedef struct structurename structure Variables;
example:
typedef struct emp e1,e2,e3;

Structure Variable declaration:
1.Tagged structure
Syntax:
struct structurename

{
datatype Var1;
datatype Var2;//structure mem
…….;
} structure Varibles;
(or)
struct structurename Varaibles;

Eg:
struct student
{
char a[50]; int rollno; char gender; char grade;
float m1,m2,m3; int age;
} s1,s2,s3; Sizeof(s1)=50+4+1+1+12+4=72
Sizeof(s2)=72 Sizeof(s3)=72

Typedef structure Syntax:
typedef struct
{
datatype Var1;
datatype Var2;
datatype Var3;

…..

} structurename; structure name Variables;

Eg: typedef struct
{
char a[80]; flaot m1,m2,m3; int age;
char gender; char grade;
}student; student s1,s2,s3;

àDuring structure declaration memory is not allocated to the structure
-->the memory allocated to structure after structure declaration

Accessing the members of the structure

Two operators are used to access the members of the structure
.(dot) operator(or) direct selection
->(arrow)operator (or) indirect selection operator

Syntax:
structureVaraible. sturucturemember
StructureVaraible-> structuremember

Eg:
#include<stdio.h>
struct student
{
char name[90];
int age;
int rollno;
};struct student s1,s2;
int main()
{
printf("enter student1 details");
scanf("%s%d%d",s1.name,&s1.age,&s1.rollno);
printf("enter student2 details");
scanf("%s%d%d",s2.name,&s2.age,&s2.rollno);
printf("%s %d %d\n",s1.name,s1.age,s1.rollno);
printf("%s %d %d\n",s2.name,s2.age,s2.rollno);
}
Output:

Important points on structures:

structure is a collection of heterogeneous collection of elements under a single
name.
It holds related information about entity structure name.
structure is a user defined datatype.
structure members are also called as attributes or data fields.
The main difference between array and structure is array holds the data of
similar data types.
All the members of the structure are declared under a single name called
structure name or entity.
The members of the structure accessed by using dot operator.
The name of the structure and structure member name should not be same.
memory is allocated for structures when we declare the structure Variables.

Structure initialization usind dot() operator:

Example:
#include<stdio.h>
#include<stdlib.h>
struct EMP

{
char name[50];
int emid;
float salary;
float exp;
};
struct EMP e1,e2,e3;//global declaration
int main()

{
struct EMP e1={"aaaa",123,55.456,6.7};
struct EMP e2={"bbbb",124,78000,8.9};
printf("%s %d %f %f\n",e1.name,e1.emid,e1.salary,e1.exp);
printf("%s %d %f %f",e2.name,e2.emid,e2.salary,e1.exp);
}

//Write a c program to read the details of employee(emp no,name,basic salary,HRA,DA) of ‘n’
employees. Calculate the gross salary of each employee and print emp name,no,gross
salary.(codetantra)#include<stdio.h>
#include<stdlib.h>
struct employee
{
char name[100];
int no;
float BS,HRA,DA,GS;
};struct employee E[100];
int main()
{
int n,i;
printf("enter no of employees:");
scanf("%d",&n);
printf("enter employee details:\n");
for(i=1;i<=n;i++)
{
scanf("%s%d%f%f%f",E[i].name,&E[i].no,&E[i].BS,&E[i].HRA,&E[i].DA);
E[i].GS=E[i].BS+E[i].HRA+E[i].DA;
}
for(i=1;i<=n;i++)
{
printf(“enter the details:\n”);
printf("Name=%s\n",E[i].name); printf("Number=%d\n",E[i].no);
printf("Gross salary=%f\n",E[i].GS);

}}

//program on structures using -> arrow operator
#include <stdio.h>
#include<stdlib.h>
struct student
{
char name[20];
int number;
int rank;
};
int main()
{
struct student s1;
struct student *s2;
s2=&s1;
scanf("%s",s2->name);
scanf("%d",&s2->number);

scanf("%d",&s2->rank);
printf("NAME:%s\n",s2->name);
printf("NUMBER:%d\n",s2->number);
printf("RANK:%d\n",s2->rank);
return 0;
}
Output:
S 1620
1
NAME=spa NUMBER=1620 RANK=1

//program on structures using -> arrow operator
#include <stdio.h>
#include<stdlib.h>
struct student
{
char name[20];
int number;
int rank;
};
int main()
{
struct student s1;
struct student *s2;
s2=&s1;
scanf("%s",s2->name);
scanf("%d",&s2->number);

scanf("%d",&s2->rank);
printf("NAME:%s\n",s2->name);
printf("NUMBER:%d\n",s2->number);
printf("RANK:%d\n",s2->rank);
return 0;
}
Output:
S 1620
1
NAME=spa NUMBER=1620 RANK=1

Complex structures:
arrays,pointers,functions are called complex structures
1.nested structure
structure within another structure is called nested.
Declaration:
tagged nested structure
struct outer_structurename
{
datatype outer_mem1;
datatype outer_mem2;
struct inner_structurename
{
datatype inner_mem1;
datatype inner_mem2;
}inner structure_Varibles;
}outer_structreVaraible;
Accesssing:
outer_structureVarible.outer_mem1;
outer_structureVarible.outer_mem2;
outer_structureVariable.inner_structureVariable.inner_mem1;
outer_structureVariable.inner_structureVariable.inner_mem2;

eg:
#include<stdio.h>
#include<stdlib.h>
struct ABC//outer structure
{
int x;
int y;
struct PQR//inner structure
{
int w;
int V;
}E;
}S;
int main()
{
printf("enter outer");
scanf("%d%d",&S.x,&S.y);
printf("enter inner");
scanf("%d%d",&S.E.w,&S.E.V);
printf("%d %d\n",S.x,S.y);
printf("%d %d\n",S.E.w,S.E.V);
}

typedef nested structure
typedef struct
{
datatype outer_mem1;
datatype outer_mem2;
typrdef struct inner_structurename
{
datatype inner_mem1;
datatype inner_mem2;
} inner_structurename ;
} outer_structurename;

outer_structurename outer_structreVaraible;
inner_structurename inner structure_Varibles;
Accesssing:
outer_structureVarible.outer_mem1;
outer_structureVarible.outer_mem2;
outer_structureVariable.inner_structureVariable.inner_mem1;
outer_structureVariable.inner_structureVariable.inner_mem2;

Array within a structure(or)structure containg arrays
*structure members are of arrays(example)
struct student
{
char name[50];//structure member is array
int marks[5];

char subjects[4][50];
float aVg;
};
struct student S={"AAA",{12,13,14,15},{Ch,Phy,Math,PPS},11};
S.marks[0],S.marks[1]
Array of structure
structure Varible is of array type
eg:
struct student
{
char name[50]; int marks[5]; char rollno[4]; float aVg;
}s[50];//structure Varible is array
struct student s={{"AAA",{12,13,14,15},{Ch,Phy,Math,PPS},11},
{"BBB",{10,11,12,13},{Ch,Phy,Math,PPS},12,
{"CCC",{10,10,11,14},{Ch,Phy,Math,PPS},10}};
/**student details**/
/**employee details**/

Structures and functions

call by Value
call by reference
A structure can be passed to a function in three ways
1. Passing indiVidual members of structure as parameter
Passing address indiVidual members of structure as parameter
2.Passing whole structure as parameter
Passing address of structure as parameter
1)Passing indiVidual members of structure as parameter

/*multiply two fractional numbers*/ #include<stdio.h>
#include<stdlib.h>
struct fraction
{
int num,den;
};struct fraction f1,f2,f3;
int mul(int ,int);//function declaration
int main()
{
printf("enter fration1");
scanf("%d%d",&f1.num,&f1.den);
printf("enter fration2");
scanf("%d%d",&f2.num,&f2.den);
f3.num=mul(f1.num,f2.num);//actual
f3.den=mul(f1.den,f2.den);//function call
printf("f3num=%d,f3den=%d",f3.num,f3.den);
}
int mul(int x,int y)//function definition
{
return (x*y);
}

Passing address indiVidual members of structure as parameter
#include<stdio.h>
#include<stdlib.h>
struct fraction
{
int num,den;
};
struct fraction f1,f2,f3;
int mul(int *x,int *y);//function declaration
int main()

{
printf("enter fration1");
scanf("%d%d",&f1.num,&f1.den);
printf("enter fration2");
scanf("%d%d",&f2.num,&f2.den);

f3.num=mul(&f1.num,&f2.num);//actual
f3.den=mul(&f1.den,&f2.den);//function call

printf("f3num=%d,f3den=%d",f3.num,f3.den);
}
int mul(int *x,int *y)//function definition
{
return (*x)*(*y);
}

Write a C program to read real and imaginary parts of a complex number using structures and perform
the following operations on complex numbers.

Add two complex numbers.
Multiply two complex numbers.
Subtract two complex numbers.

#include <stdio.h>
#include<stdlib.h>
struct complex

{
int real, img;
};
struct complex a, b, c;

Void add(struct complex a,struct complex b)
{
c.real = a.real + b.real;
c.img = a.img + b.img;
printf("Addition = %d + i %d\n",c.real,c.img);
}

Void sub(struct complex a,struct complex b)
{
c.real = a.real - b.real; c.img = a.img - b.img;
printf("Subtraction = %d + i %d\n",c.real,c.img);
}

Void mul(struct complex a,struct complex b)
{
c.real = a.real*b.real - a.img*b.img;
c.img = a.img*b.real + a.real*b.img;
printf("Multiplication = %d + i %d\n",c.real,c.img);
}

int main()
{
printf("Enter complex1 : ");
scanf("%d%d", &a.real,&a.img);
printf("Enter complex2 : ");
scanf("%d%d", &b.real,&b.img);
add(a,b);
sub(a,b);
mul(a,b);
return 0;

}

Write a C program to read time in hours, minutes, seconds using structures and perform the following operations
on time.
Addition of two time periods.
Subtraction of two time periods.
#include<stdio.h>
#include<stdlib.h>
struct time

{
int hr,min,sec;
};
struct time t1,t2,t3;

Void add()
{
t3.min = t1.min+t2.min;
t3.sec = t1.sec+t2.sec;
t3.hr = t1.hr+t2.hr;
while(t3.sec>=60)
{
t3.min++;
t3.sec = t3.sec-60;
}
while(t3.min>=60)
{
t3.hr++;
t3.min = t3.min-60;
}
printf("Addition = %d:%d:%d\n",t3.hr,t3.min,t3.sec);
}

Void sub()
{
if(t1.sec<t2.sec)
{
t1.min--;
t1.sec = t1.sec+60;
}
t3.sec = t1.sec-t2.sec;
if(t1.min<t2.min)
{
t1.hr--;
t1.min = t1.min+60;
}
t3.min = t1.min-t2.min;
t3.hr = t1.hr-t2.hr;
printf("Subtraction = %d:%d:%d\n",t3.hr,t3.min,t3.sec);
}
int main()
{
printf("Enter time1 : ");
scanf("%d%d%d",&t1.hr,&t1.min,&t1.sec);
printf("Enter time2 : ");
scanf("%d%d%d",&t2.hr,&t2.min,&t2.sec);
add();
sub();
return 0;

}

Passing whole structure as parameter
#include<stdio.h>
#include<stdlib.h>//header file for stryctures
struct fraction
{
int num,den;
};
struct fraction f1,f2,f3;
struct fraction mul(struct fraction f1,struct fraction f2);//function declaration
int main()
{
printf("enter fration1");
scanf("%d%d",&f1.num,&f1.den);//(1,2)
printf("enter fration2");
scanf("%d%d",&f2.num,&f2.den);//(3,4)
f3=mul(f1,f2);(1,2,3,4);//function call
printf("F3num=%d,F3den=%d",f3.num,f3.den);
}
struct fraction mul(struct fraction f1,struct fraction f2)//function definition
{
struct fraction res;
res.num=f1.num * f2.num;
res.den=f1.den * f2.den;
return res;
}

Passing address of whole structure as parameter
#include<stdio.h>
struct fraction
{
int num,den;
};
struct fraction *f1,*f2,*f3;
struct fraction mul(struct fraction *f1,struct fraction *f2);
int main()
{
printf("enter fration1");
scanf("%d%d",f1->num,f1->den);
printf("enter fration2");
scanf("%d%d",f2->num,f2->den);
*f3=mul(f1,f2);
printf("F3num=%d,F3den=%d",f3->num,f3->den);
}
struct fraction mul(struct fraction *f1,struct fraction *f2)
{
struct fraction *res;
res.num=f1->num * f2->num;
res.den=f1->den * f2->den;
return res;
}

UNIONS:
it is also heterogeneous collection of data elements declaration:
union union_name
{
//union members;
datatype mem1;
datatype mem2;
datatype mem3;

.....
};
union union_name Varaible;//union Varaible declaration

*only difference b/w structure and union is in terms of memory
allocation
*memory associated with structure is sum of datatypes of all
datamembers
*memory associated with union is highest data member memory
*members of union can accessed by using dot operator

eg:
#include<stdio.h>
#include<stdlib.h>

union student
{
char name[70];
int age;
char gender;
char grade;
float m1,m2,m3;

};union student s1;//70+4+1+1+12=88(structure)//union =70
int main(){
printf("enter name"); scanf("%s",s1.name);
printf("%s",s1.name);
printf("enter age"); scanf("%d",&s1.age);

printf("%d",s1.age);
printf("enter gender"); scanf("%c",&s1.gender);

printf("%c",s1.gender);
}

self referential structure
A structure referring itself is called as self referential structure. it is mainly used in Data
structure
syntax:

struct structure_name
{
struct structure_name *pointer
};

eg:
struct node
{
int data;
struct node *link;
};
Representation of node single linked list
struct node

{
int data;
struct node *next;
};
Representation of node double linked list
struct node

{
int data;
struct node *preV; struct node *next;
};

Self Referential Structures

Self Referential structures are those structures that haVe one or more pointers which point to the
same type of structure, as their member.
In other words, structures pointing to the same type of structures are self- referential in nature.

Example:
filter_none brightness_4
struct node
{
int data1;
char data2;
struct node* link;
};
int main()

{
struct node ob;
return 0;
}

In the aboVe example ‘link’ is a pointer to a structure of type ‘node’. Hence, the structure ‘node’
is a self-referential structure with ‘link’ as the referencing pointer.
An important point to consider is that the pointer should be initialized properly before accessing,
as by default it contains garbage Value.

Types of Self Referential Structures:
•Self Referential Structure with Single Link
•Self Referential Structure with Multiple Links

Self Referential Structure with Single Link:
These structures can haVe only one self-pointer as their member. The following
example will show us how to connect the objects of a self-referential structure with
the single link and access the corresponding data members. The connection formed is
shown in the following figure.

filter_none edit play_arrow brightness_4
#include <stdio.h>

struct node { int data1; char data2;
struct node* link;
};

int main()
{

struct node ob1; // Node1

// Initialization ob1.link = NULL; ob1.data1 = 10;
ob1.data2 = 20;

struct node ob2; // Node2

// Initialization ob2.link = NULL; ob2.data1 = 30;
ob2.data2 = 40;

// Linking ob1 and ob2 ob1.link = &ob2;

// Accessing data members of ob2 using ob1 printf("%d", ob1.link->data1);
printf("\n%d", ob1.link->data2); return 0;
}
Output:

Self Referential Structure with Multiple Links: Self referential structures with multiple links can
haVe more than one self-pointers. Many complicated data structures can be easily constructed
using these structures. Such structures can easily connect to more than one nodes at a time.

The following example shows one such structure with more than one links.
The connections made in the aboVe example can be understood using the following figure.

#include <stdio.h>
struct node { int data;

struct node* preV_link;
struct node* next_link;
};
int main()

{
struct node ob1; // Node1
// Initialization

ob1.preV_link = NULL; o
b1.next_link = NULL;
ob1.data = 10;
struct node ob2; // Node2
// Initialization

ob2.preV_link = NULL;
ob2.next_link = NULL;
ob2.data = 20;
struct node ob3; // Node3
// Initialization

ob3.preV_link = NULL;
ob3.next_link = NULL;
ob3.data = 30;
// Forward links
ob1.next_link = &ob2;

ob2.next_link = &ob3;
// Backward links

ob2.preV_link = &ob1;
ob3.preV_link = &ob2;

// Accessing data of ob1, ob2 and ob3 by ob1
printf("%d\t", ob1.data);
printf("%d\t", ob1.next_link->data);
printf("%d\n", ob1.next_link->next_link->data);
// Accessing data of ob1, ob2 and ob3 by ob2
printf("%d\t", ob2.preV_link->data);
printf("%d\t", ob2.data);
printf("%d\n", ob2.next_link->data);
// Accessing data of ob1, ob2 and ob3 by ob3
printf("%d\t", ob3.preV_link->preV_link->data);
printf("%d\t", ob3.preV_link->data);
printf("%d", ob3.data);
return 0;
}
Output:
In the aboVe example we can see that ‘ob1’, ‘ob2’ and ‘ob3’ are three objects of the self
referential structure ‘node’. And they are connected

using their links in such a way that any of them can easily access each other’s data. This is
the beauty of the self referential structures. The connections can be manipulated according to
the requirements of the programmer.

10 20 30
10 20 30
10 20 30

typedef:
stands for type definition.
It is used for representing existing data types or rename the existing
Variables.
Syntax:
typedef datatype identifier;
ex:

typedef int marks;
marks sub1,sub2,sub3;
typedef float a;
a s1;
#include<stdio.h> int main()

{
typedef int marks;
marks s1,s2,s3;

printf("enter marks:");
scanf("%d%d%d",&s1,&s2,&s3);
printf("the marks are:");
printf("%d %d %d",s1,s2,s3);
}

Enumerated data type:
It is represented by “enum”
Syntax:
enum typename
{
mem1,mem2,mem3;
};

#include <stdio.h>
enum week
{
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
};
int main()
{ // creating today variable of enum week type
enum week today;
today = Wednesday;
printf("Day %d",today+1);
return 0;
}
Output
Day 4

Write a C program to store name, roll number, year and marks of three
subjects of n students and print the student the name, roll number, aVerage, and grade based
on aVerage marks of the student using structures.
#include<stdio.h>
struct student {
int rollno;
char name[30]; int year;
int m1,m2,m3;
};struct student s[20];
int main()

{
int n,i; float aVg; char grade;
printf("Enter no of students(<=3) : ");
scanf("%d",&n);
printf("Enter rollno,name,year,m1,m2,m3 : ");
for(i=0; i<n; i++)
scanf("%d%s%d%d%d%d",&s[i].rollno,s[i].name,&s[i].year,&s[i].m1,&s[i].m2, &s[i].m3);

for(i=0; i<n; i++)
{
aVg = (s[i].m1+s[i].m2+s[i].m3)/3.0; if(aVg>=75)
grade = 'A';
else if(aVg>=50) grade = 'B';
else
grade = 'C';
printf("Rollno = %d\nName = %s\nAVerage = %f\nGrade =
%c\n",s[i].rollno,s[i].name,aVg,grade);
}

Write a C program to read real and imaginary parts of a complex number using structures and perform the following operations
on complex numbers.

Add two complex numbers.
Multiply two complex numbers.
Subtract two complex numbers.
#include <stdio.h>

struct complex
{
int real, img;
};
struct complex a, b, c;
Void add(struct complex a,struct complex b)
{
c.real = a.real + b.real; c.img = a.img + b.img;
printf("Addition = %d + i %d\n",c.real,c.img);
}
Void sub(struct complex a,struct complex b)
{
c.real = a.real - b.real; c.img = a.img - b.img;
printf("Subtraction = %d + i %d\n",c.real,c.img);
}
Void mul(struct complex a,struct complex b)
{
c.real = a.real*b.real - a.img*b.img; c.img = a.img*b.real + a.real*b.img;
printf("Multiplication = %d + i %d\n",c.real,c.img);
}
int main()
{
printf("Enter complex1 : ");
scanf("%d%d", &a.real,&a.img); printf("Enter complex2 : ");
scanf("%d%d", &b.real,&b.img); add(a,b);
sub(a,b);
mul(a,b);
return 0;
}

Structures in C
In C programming language, a structure is a collection of elements of the different
data type. The structure is used to create user-defined data type in the C programming
language. As the structure used to create a user-defined data type, the structure is also
said to be “user-defined data type in C”.

In other words, a structure is a collection of non-homogeneous elements. Using
structure we can define new data types called user-defined data types that holds
multiple values of the different data type.

The formal definition of structure is as follows...
Structure is a colloction of different type of elements under a single name that
acts as user defined data type in C.

Generally, structures are used to define a record in the c programming language.
Structures allow us to combine elements of a different data type into a group. The
elements that are defined in a structure are called members of structure.

How to create structure?
To create structure in c, we use the keyword called "struct".
We use the following syntax to create structures in c programming language.
struct <structure_name>
{

data_type member1;
data_type member2, member3;
.
.

} ;
Following is the example of creating a structure called Student which is used to hold student
record.
Creating structure in C
struct Student
{
char stud_name[30];
int roll_number;
float percentage;
} ;

Importent Points to be Remembered
Every structure must terminated with semicolon symbol (;).
"struct" is a keyword, it must be used in lowercase letters only.

Creating and Using structure variables
In a c programming language, there are two ways to create structure variables. We can create structure variable
while defining the structure and we can also create after terminating structure using struct keyword.
To access members of a structure using structure variable, we use dot (.) operator.

Consider the following example code...
Creating and Using structure variables in C
struct Student
{
char stud_name[30];

int roll_number;
float percentage;
} stud_1 ; // while defining structure
void main()
{ struct Student stud_2; // using struct keyword
printf("Enter details of stud_1 : \n");
printf("Name : ");

scanf("%s", stud_1.stud_name);
printf("Roll Number : ");
scanf("%d", &stud_1.roll_number);
printf("Percentage : ");
scanf("%f", &stud_1.percentage);
printf("***** Student 1 Details *****\n);

printf("Name of the Student : %s\n", stud_1.stud_name);
printf("Roll Number of the Student : %i\n", stud_1.roll_number); printf("Percentage of the Student : %f\n",
stud_1.percentage);
}
In the above example program, the stucture variable "stud_1 is created while defining the structure and the variable
"stud_2 is careted using struct keyword. Whenever we access the members of a structure we use the dot (.)
operator.

Memory allocation of Structure

When the structures are used in the c programming language, the memory does not allocate on defining a structure.
The memory is allocated when we create the variable of a particular structure. As long as the variable of a structure
is created no memory is allocated. The size of memory allocated is equal to the sum of memory required by
individual members of that structure.

In the above example program, the variables stud_1 and stud_2 are allocated with 36 bytes of memory each.

Importent Points to be Remembered
All the members of a structure can be used simultaneously.
Until variable of a structure is created no memory is allocated.
The memory required by a structure variable is sum of the memory required by individual members of that

structure.

Unions in C
In C programming language, the union is a collection of elements of the different data
type. The union is used to create user-defined data type in the C programming
language. As the union used to create a user-defined data type, the union is also said to
be “user-defined data type in C”.

In other words, the union is a collection of non-homogeneous elements. Using union
we can define new data types called user-defined data types that holds multiple values
of the different data type.

The formal definition of a union is as follows...
Union is a colloction of different type of elements under a single name that acts as
user defined data type in C.

Generally, unions are used to define a record in the c programming language. Unions
allow us to combine elements of a different data type into a group. The elements that
are defined in a union are called members of union.

How to create union?
To create union in c, we use the keyword called "union".

We use the following syntax to create unions in c programming language.
union <structure_name>
{

data_type member1;
data_type member2, member3;
.
.

} ;
Following is the example of creating a union called Student which is used to
hold student record.
Creating union in C
union Student { char stud_name[30]; int roll_number; float percentage; } ;

Importent Points to be Remembered
Every union must terminated with semicolon symbol (;).
"union" is a keyword, it must be used in lowercase letters only.

Creating and Using union variables
In a c programming language, there are two ways to create union variables. We can create union variable while
the union is defined and we can also create after terminating union using union keyword.
TO access members of a union using union variable, we use dot (.) operator.
Consider the following example code...
Creating and Using union variables in C
union Student {
char stud_name[30];
int roll_number;
float percentage;
} stud_1 ; // while defining union
void main()
{
union Student stud_2; // using union keyword
printf("Enter details of stud_1 : \n");
printf("Name : ");
scanf("%s", stud_1.stud_name);
printf("Roll Number : ");
scanf("%d", &stud_1.roll_number);
printf("Percentage : ");
scanf("%f", &stud_1.percentage);
printf("***** Student 1 Details *****\n);
printf("Name of the Student : %s\n", stud_1.stud_name);
printf("Roll Number of the Student : %i\n", stud_1.roll_number);
printf("Percentage of the Student : %f\n", stud_1.percentage);
}
In the above example program, the union variable "stud_1 is created while defining the union and the variable
"stud_2 is careted using union keyword. Whenever we access the members of a union we use the dot (.)
operator.

#include <stdio.h>
#include <string.h>
union Data
{
int i;
float f;
char str[20];
};
int main()
{
union Data data;
data.i = 10
; printf("data.i : %d\n", data.i);
data.f = 220.5;
printf("data.f : %f\n", data.f);
strcpy(data.str, "C Programming");
printf("data.str : %s\n", data.str);
return 0;
}
When the above code is compiled and executed, it produces the following result −
data.i : 10
data.f : 220.500000
data.str : C Programming

Memory allocation of Union
When the unions are used in the c programming language, the memory does not allocate on
defining union. The memory is allocated when we create the variable of a particular union. As
long as the variable of a union is created no memory is allocated. The size of memory allocated is
equal to the maximum memory required by an individual member among all members of that
union.
In the above example program, the variables stud_1 and stud_2 are allocated with 30 bytes of
memory each.

Files in C
Generally, a file is used to store user data in a computer. In other words,
computer stores the data using files.

we can define a file as follows...
File is a collection of data that stored on secondary memory like
harddisk of a computer.

C programming language supports two types of files and they are as
follows...
•Text Files (or) ASCII Files
•Binary Files

Text File (or) ASCII File - The file that contains ASCII codes of data like
digits, alphabets and symbols is called text file (or) ASCII file.

Binary File - The file that contains data in the form of bytes (0's and 1's) is
called as binary file. Generally, the binary files are compiled version of text
files.

File Operations in C

The following are the operations performed on files in c programming
langauge...
Creating (or) Opening a file
Reading data from a file
Writing data into a file
Closing a file

All the above operations are performed using file handling functions
available in C. We discuss file handling functions in the next topic.

File Handling Functions in C
File is a collection of data that stored on secondary memory like hard disk of
a computer.

The following are the operations performed on files in the c programming
language...
Creating (or) Opening a file
Reading data from a file
Writing data into a file
Closing a file

All the above operations are performed using file handling functions
available in C.

Creating (or) Opening a file
To create a new file or open an existing file, we need to create a file pointer
of FILE type.

Following is the sample code for creating file pointer.
File *f_ptr ;

We use the pre-defined method fopen() to create a new file or to open an
existing file. There are different modes in which a file can be opened.

Consider the following code...
File *f_ptr ; *f_ptr = fopen("abc.txt", "w") ;

The above example code creates a new file called abc.txt if it does not exists
otherwise it is opened in writing mode.

Reading from a file
The reading from a file operation is performed using the following pre-defined file handling methods.
getc()
getw()
fscanf()
fgets()
fread()
getc(*file_pointer) - This function is used to read a character from specified file which is opened in reading
mode. It reads from the current position of the cursor. After reading the character the cursor will be at next
character.

Example Program to illustrate getc() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;
char ch;

clrscr();
fp = fopen("MySample.txt","r");
printf("Reading character from the file: %c\n",getc(fp));
ch = getc(fp);
printf("ch = %c", ch);
fclose(fp);
getch();
return 0;
}

getw(*file_pointer) - This function is used to read an integer value form the specified file
which is opened in reading mode. If the data in file is set of characters then it reads ASCII
values of those characters.

Example Program to illustrate getw() in C.
#include<stdio.h>
#include<conio.h>

int main()
{
FILE *fp;
int i,j;
clrscr();

fp = fopen("MySample.txt","w");
putw(65,fp); // inserts A
putw(97,fp); // inserts a

fclose(fp); fp = fopen("MySample.txt","r");
i = getw(fp); // reads 65 - ASCII value of A
j = getw(fp); // reads 97 - ASCII value of a

printf("SUM of the integer values stored in file = %d", i+j); // 65 + 97 = 162
fclose(fp);
getch();
return 0;
}

Output

fscanf(*file_pointer, typeSpecifier, &variableName) - This function is used to read multiple
datatype values from specified file which is opened in reading mode.

Example Program to illustrate fscanf() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
char str1[10], str2[10], str3[10];
int year;
FILE * fp;

clrscr();
fp = fopen ("file.txt", "w+");
fputs("We are in 2016", fp);
rewind(fp); // moves the cursor to begining of the file
fscanf(fp, "%s %s %s %d", str1, str2, str3, &year);
printf("Read String1 - %s\n", str1);
printf("Read String2 - %s\n", str2);
printf("Read String3 - %s\n", str3);

printf("Read Integer - %d", year);
fclose(fp);
getch();
return 0;

}

fgets(variableName, numberOfCharacters, *file_pointer) - This method is used for
reading a set of characters from a file which is opened in reading mode starting from
the current cursor position. The fgets() function reading terminates with reading
NULL character.

Example Program to illustrate fgets() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;
char *str;
clrscr();
fp = fopen ("file.txt", "r");
fgets(str,6,fp);
printf("str = %s", str);
fclose(fp);
getch();
return 0;
}

fread(source, sizeofReadingElement, numberOfCharacters, FILE *pointer) -
This function is used to read specific number of sequence of characters from

the specified file which is opened in reading mode.

Example Program to illustrate fgets() in C.
#include<stdio.h>
#include<conio.h>

int main()
{
FILE *fp;

char *str;
clrscr();
fp = fopen ("file.txt", "r");
fread(str,sizeof(char),5,fp);
str[strlen(str)+1] = 0;
printf("str = %s", str);
fclose(fp);

getch();
return 0;

}

Writing into a file
The writing into a file operation is performed using the following pre-defined file handling methods.
putc()
putw()
fprintf()
fputs()
fwrite()
putc(char, *file_pointer) - This function is used to write/insert a character to the specified file when the file
is opened in writing mode.

Example Program to illustrate putc() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;

char ch;
clrscr();

fp = fopen("C:/TC/EXAMPLES/MySample.txt","w");
putc('A',fp);
ch = 'B';
putc(ch,fp);
fclose(fp);
getch();
return 0;
}

putw(int, *file_pointer) - This function is used to writes/inserts an integer value to the
specified file when the file is opened in writing mode.

Example Program to illustrate putw() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;
int i;
clrscr();
fp = fopen("MySample.txt","w");
putw(66,fp);
i = 100;
putw(i,fp);
fclose(fp);
getch();
return 0;
}

fprintf(*file_pointer, "text") - This function is used to writes/inserts multiple
lines of text with mixed data types (char, int, float, double) into specified file
which is opened in writing mode.

Example Program to illustrate "fprintf()" in C.
#include<stdio.h>
#include<conio.h>
int main()

{
FILE *fp;

char *text = "\nthis is example text"; int i = 10;
clrscr();
fp = fopen("MySample.txt","w");

fprintf(fp,"This is line1\nThis is line2\n%d", i);
fprintf(fp,text);
fclose(fp);
getch();
return 0;

}

fputs("string", *file_pointer) - TThis method is used to insert string data into
specified file which is opened in writing mode.

Example Program to illustrate fputs() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;
char *text = "\nthis is example text";
clrscr();
fp = fopen("MySample.txt","w");
fputs("Hi!\nHow are you?",fp);

fclose(fp);
getch();
return 0;
}

fwrite(“StringData”, sizeof(char), numberOfCharacters, FILE *pointer) -
This function is used to insert specified number of characters into a binary file

which is opened in writing mode.

Example Program to illustrate fwrite() in C.
#include<stdio.h>
#include<conio.h>
int main()

{
FILE *fp;

char *text = "Welcome to C Language";
clrscr();
fp = fopen("MySample.txt","wb");
fwrite(text,sizeof(char),5,fp);
fclose(fp);
getch();

return 0;
}

Closing a file
Closing a file is performed using a pre-defined method fclose().
fclose(*f_ptr)
The method fclose() returns '0'on success of file close otherwise it returns
EOF (End Of File).

Cursor Positioning Functions in Files
C programming language provides various pre-defined methods to set the
cursor position in files.

The following are the methods available in c, to position cursor in a file.
ftell()
rewind()
fseek()

ftell(*file_pointer) - This function returns the current position of the cursor in the
file.

Example Program to illustrate ftell() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;
int position;
clrscr();
fp = fopen ("file.txt", "r");
position = ftell(fp);
printf("Cursor position = %d\n",position);
fseek(fp,5,0);
position = ftell(fp);
printf("Cursor position = %d", position);
fclose(fp);
getch();
return 0;
}

rewind(*file_pointer) - This function is used reset the cursor position to the beginning of the
file.

Example Program to illustrate rewind() in C.
#include<stdio.h>
#include<conio.h>
int main()
{
FILE *fp;

int position;
clrscr();
fp = fopen ("file.txt", "r");
position = ftell(fp);

printf("Cursor position = %d\n",position);
fseek(fp,5,0);
position = ftell(fp);
printf("Cursor position = %d\n", position);
rewind(fp);

position = ftell(fp);
printf("Cursor position = %d", position);
fclose(fp);
getch();
return 0;
}

fseek(*file_pointer, numberOfCharacters, fromPosition) - This function is used to set the cursor position to
the specific position.

Using this function we can set the cursor position from three different position they are as follows.
from beginning of the file (indicated with 0)
from current cursor position (indicated with 1)
from ending of the file (indicated with 2)

Example Program to illustrate fseek() in C.
#include<stdio.h>
#include<conio.h>
int main()

{
FILE *fp;
int position;

clrscr();
fp = fopen ("file.txt", "r");
position = ftell(fp);
printf("Cursor position = %d\n",position);
fseek(fp,5,0);
position = ftell(fp);
printf("Cursor position = %d\n", position);
fseek(fp, -5, 2);

position = ftell(fp);
printf("Cursor position = %d", position);
fclose(fp);
getch();

return 0;
}

	Line 1: Comments - They are ignored by the compiler
	Line 2: Preprocessing Commands
	Line 3: Global Declaration
	Line 4: int main()
	Line 5: Open Brase ({)
	Line 6: Local Declaration
	Line 7: Executable statements
	Line 9: Closing Brase (})
	Line 10, 11, 12, ...: Userdefined function()
	General rules for any C program
	Primary Datatypes
	Integer Datatype
	Floating Point Datatypes
	Character Datatype
	void Datatype
	Enumerated Datatype
	Derived Datatypes
	scanf() function:
	Syntax:
	scanf("format strings",&variableNames);
	Example Program
	Output:
	Enter one integer followed by one float value : 20 30.5 integer = 20, float = 30.5
	In the above example program, we used the scanf() function to read one integer value and one float value from the keyboard. Here 'i' is an integer variable so we have used format string %d, and 'x' is a float variable so we have used format string %f....
	Example Program (1)
	#include <stdio.h>
	void main(){
	int i,a,b;
	float x;
	printf("\nEnter two integers and one float : ");
	i = scanf("%d%d%f",&a, &b, &x);
	printf("\nTotal inputs read : %d",i);
	}
	Output: (1)
	Enter two integers and one float : 10 20 55.5 Total inputs read : 3
	getchar() function
	The getchar() function is used to read a character from the keyboard and return it to the program. This function is used to read only single character. To read multiple characters we need to write multiple times or use a looping statement. Consider th...
	#include <stdio.h> (1)
	void main(){ (1)
	char ch;
	printf("\nEnter any character : ");
	ch = getchar();
	printf("\nYou have entered : %c",ch);
	} (1)
	Output: (2)
	Enter any character : A You have entered : A
	getch() function
	The getch() function is similar to getchar function. The getch() function is used to read a character from the keyboard and return it to the program. This function is used to read only single character. To read multiple characters we need to write mul...
	#include <stdio.h> (2)
	void main(){ (2)
	char ch; (1)
	printf("\nEnter any character : "); (1)
	ch = getch();
	printf("\nYou have entered : %c",ch); (1)
	} (2)
	Output: (3)
	Enter any character : You have entered : A
	gets() function
	The gets() function is used to read a line of string and stores it into character array. The gets() function reads a line of string or sequence of characters till a newline symbol enters. Consider the following example program...
	#include <stdio.h> (3)
	void main(){ (3)
	char name[30];
	printf("\nEnter your favourite website: ");
	gets(name);
	printf("%s",name);
	} (3)
	Output: (4)
	Enter your favourite website: www.btechsmartclass.com
	fscanf() function
	The fscanf() function is used with the concept of files. The fscanf() function is used to read data values from a file. When you want to use fscanf() function the file must be opened in reading mode.
	Output Functions in C:
	C programming language provides built-in functions to perform output operation. The output opearations are used to display data on user screen (output screen) or printer or any file. C programming language provides the following built-in output functi...
	printf()
	putchar()
	puts()
	fprintf()
	printf() function
	The printf() function is used to print string or data values or combination of string and data values on the output screen (User screen). The printf() function is built-in function defined in a header file called "stdio.h". When we want to use printf(...
	Syntax: (1)
	printf("message to be display!!!");
	Example Program (2)
	#include <stdio.h> (4)
	void main(){ (4)
	printf("Hello! Welcome to btechsmartclass!!!");
	} (4)
	Output: (5)
	Hello! Welcome to btechsmartclass!!!
	In the above example program, we used the printf() function to print a string on to the output screen. The printf() function is also used to display data values. When we want to display data values we use format string of the data value to be display.
	Syntax: (2)
	printf("format string",variableName);
	Example Program (3)
	#include <stdio.h> (5)
	void main(){ (5)
	int i = 10;
	float x = 5.5;
	printf("%d %f",i, x); }
	Output: (6)
	10 5.5
	In the above example program, we used the printf() function to print data values of variables i and x on to the output screen. Here i is a integer variable so we have used format string %d and x is a float variable so we have used format string %f. T...
	Syntax: (3)
	printf("String format string",variableName);
	Example Program (4)
	#include <stdio.h> (6)
	void main(){ (6)
	int i = 10; (1)
	float x = 5.5; (1)
	printf("Integer value = %d, float value = %f",i, x);
	} (5)
	Output: (7)
	Integer value = 10, float value = 5.5
	In the above program we are displaying string along with data values. Every function in C programming language must have a return value. The printf() function also have integer as return value. The printf() function returns an integer value equalent ...
	Example Program (5)
	#include <stdio.h> (7)
	void main(){ (7)
	int i;
	i = printf("btechsmartclass");
	printf(" is %d number of characters.",i); }
	Output: (8)
	btechsmartclass is 15 number of characters.
	In the above program, first printf() function printing "btechsmartclass" which is of 15 characters. So it returns integer value 15 to variable "i". The value of "i" is printed in the second printf() function.
	Formatted printf() function
	Generally, when we write multiple printf() statements the result is displayed in single line because the printf() function displays the output in a single line. Consider the following example program...
	#include <stdio.h> (8)
	void main(){ (8)
	printf("Welcome to ");
	printf("btechsmartclass ");
	printf("the perfect website for learning");
	} (6)
	Output: (9)
	Welcome to btechsmartclass the perfect website for learning
	In the above program, there are 3 printf() statements written in different lines but the output is displayed in single line only. To display the output in different lines or as we wish, we use some special characters called escape sequences. Escape s...
	putchar() function
	puts() function
	fprintf() function

