
Unit-I



Syllabus

Review of Object oriented 
concepts

History of Java

 Java buzzwords

JVM architecture

Data types

Variables

Scope and life time of variables

arrays

operators

control statements

type conversion and casting, 

simple java program, 

constructors, 

methods, 

Static block,

 Static Data, 

Static Method String and String 
Buffer Classes, 

Using Java API Document



Object oriented concepts



OOPs

Object-Oriented Programming is a paradigm that provides many concepts,
such as Abstraction, Encapsulation, Inheritance, Polymorphism, etc.

The programming paradigm where everything is represented as an object
is known as a truly object-oriented programming language.

Smalltalk is considered the first truly object-oriented programming
language.

Popular object-oriented languages are Java, C#, PHP, Python, C++,
Kotlin etc..

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/c-sharp-tutorial
https://www.javatpoint.com/php-tutorial
https://www.javatpoint.com/python-tutorial
https://www.javatpoint.com/cpp-tutorial


Abstraction

Providing the essential features without its inner details is called abstraction 
(or) hiding internal implementation is called Abstraction.

We can enhance the internal implementation without effecting outside world. 

Abstraction provides security.

A class contains lot of data and the user does not need the entire data.

 The advantage of abstraction is that every user will get his own view of the 
data according to his requirements and will not get confused with unnecessary 
data. 



Encapsulation

Wrapping up of data (variables) and methods into single unit is called 
Encapsulation. 

Class is an example for encapsulation. 

Encapsulation can be described as a protective barrier that prevents 
the code and data being randomly accessed by other code defined 
outside the class.



Inheritance

Acquiring the properties from one class to another class is called 
inheritance (or) producing new class from already existing class is 
called inheritance. 

Reusability of code is main advantage of inheritance.

 In Java inheritance is achieved by using extends keyword.

 The properties with access specifier private cannot be inherited.



Polymorphism

The word polymorphism came from two Greek words ‘poly’ means 
‘many’ and ‘morphos’ means ‘forms’. 

Thus, polymorphism represents the ability to assume several different 
forms. 

The ability to define more than one function with the same name is 
called Polymorphism



OOPs Terms

In object-oriented programming, a class is a programming language 
construct that is used as a blueprint to create objects. 

This blueprint includes attributes and methods that the created objects all 
share. 

Usually, a class represents a person, place, or thing - it is an abstraction of 
a concept within a computer program.

 Fundamentally, it encapsulates the state and behavior of that which it 
conceptually represents. 

It encapsulates state through data placeholders called member variables; it 
encapsulates behavior through reusable code called methods



History of Java



Initially Java was developed by James Gosling at Sun Microsystems 
(which is now a subsidiary of Oracle Corporation) and released first 
official version in 1995.

He is also known as Father of Java

The history of Java starts with the Green Team.

James Gosling , Mike Sheridan, and Patrick Naughton initiated the 
Java language project in June 1991.



Initially it was designed for small, embedded systems in electronic 
appliances like set-top boxes, TV’s

Firstly, it was called "Greentalk" by James Gosling, and the file 
extension was .gt.

After that, it was called Oak and was developed as a part of the Green 
project.



Why Java named "Oak"?

Oak is a name of Tree (It’s a symbol of strength)

And it is national tree of many countries like the U.S.A., France, 
Germany, Romania, etc.



Oak Tree



Because of some trademark issues Oak was renamed as "Java“  in 
1995 

Java is an island of Indonesia where the first coffee was produced 
(called java coffee). It is a kind of espresso bean. 

Note : -JAVA is not an acronym

-It is not extension of C++



Symbol of JAVA



Java Buzzwords

Simple

Platform independent

Secure

Portable

Object-oriented

Robust

Multithreaded

Architecture-neutral

Interpreted

High performance

Distributed

Dynamic



Simple

Java is a small and simple language. 

Java does not use pointers, pre-processor header files, goto statement 
and many other.

 It also eliminates operator overloading and multiple inheritance.

Java inherits the C/C++ syntax and many of the object oriented 
features of C++. 



Platform Independent 

Compile the Java program on one OS (operating system) that compiled 
file can execute in any OS(operating system) is called Platform 
Independent Nature.

The java is platform independent language. 

The java applications allows its applications compilation one operating 
system that compiled (.class) files can be executed in any operating 
system





Secure

Security becomes an important issue for a language that is used for 
programming on Internet. 

Every time when you download a “normal program”, here is a risk of viral 
infection. 

When we use a java compatible web browser, we can safely download 
Java applets without fear of viral infection. 

Java achieves this protection by confining a Java program to the Java 
execution environment and not allowing it access to other parts of the 
computer.



Portable

Java programs can be easily moved from one computer system to 
another, anywhere and anytime.

 This is the reason why Java has become a popular language for 
programming on Internet.



Object-Oriented

Java is a true object oriented language.

Almost everything in java is an object. 

All program code and data reside within objects and classes Java 
comes with an extensive set of classes, arranged in packages, that we 
can use in our programs by inheritance.

 The object model in java is simple and easy to extend.



ROBUST

Any technology if it is good at two main areas it is said to be ROBUST 
Exception Handling

Memory Allocation 

JAVA is having very good predefined Exception Handling mechanism 
whenever we are getting exception we are having meaning full information.

JAVA is having very good memory management system that is Dynamic 
Memory (at runtime the memory is allocated) Allocation which allocates 
and deallocates memory for objects at runtime



Multithreaded

Multithreaded means handling multiple tasks simultaneously.

This means that we need not wait for the application to finish one task 
before beginning another. 

To accomplish this, java supports multithreaded programming which 
allows to write programs that do many things simultaneously. 



Architecture-Neutral

A central issue for the Java designers was that of code longevity and 
portability.

 One of the main problems facing programmers is that no guarantee exists 
that if you write a program today, it will run tomorrow—even on the same 
machine.

 Operating system upgrades, processor upgrades, and changes in core 
system resources can all combine to make a program malfunction.



Ex: 

In C programming, int data type occupies 2 bytes of memory for 32-
bit architecture and 4 bytes of memory for 64-bit architecture. 

But in java, int occupies 4 bytes of memory for both 32 and 64 bit 
architectures.

 Java Virtual Machine solves this problem. The goal is “write once; 
run anywhere, any time, forever.” 



Interpreted and High Performance

Java performance is impressive for an interpreted language, mainly due 
to the use of byte code.

This code can be interpreted on any system that provides a JVM.

Java was designed to perform well on very low power CPUs.



Distributed

Java is designed for the distributed environment of the Internet, 
because it handles TCP/IP protocols.

In fact, accessing a resource using a URL is not much different from 
accessing a file.

The original version of Java (Oak) included features for intra address-
space messaging. 



This allowed objects on two different computers to execute 
procedures remotely.

Java revived these interfaces in a package called Remote Method 
Invocation (RMI). 

This feature brings an unparalleled level of abstraction to client/ 
server programming.



Dynamic

Java programs carry with them substantial amounts of run-time type 
information that is used to verify and resolve accesses to objects at run 
time. 

This makes it possible to dynamically link code in a safe and 
expedient manner. 



JVM Architecture



What Is the JVM?

A Virtual Machine is a software implementation of a physical 
machine. 

Java was developed with the concept of WORA (Write Once Run 
Anywhere), which runs on a VM. 

The compiler compiles the Java file into a Java .class file, then that 
.class file is input into the JVM, which loads and executes the class 
file. 



JVM Architecture



As shown in the above architecture diagram, the JVM is divided into 
three main subsystems:
Class Loader Subsystem

Runtime Data Area

Execution Engine



1. ClassLoader Subsystem

Java's dynamic class loading functionality is handled by the 
ClassLoader subsystem. 

It loads, links. and initializes the class file when it refers to a class for 
the first time at runtime, not compile time.



a) Loading

There are three class loaders in JVM i.e, BootStrap ClassLoader, 
Extension ClassLoader, and Application ClassLoader

BootStrap ClassLoader : Responsible for loading classes from the 
bootstrap classpath, nothing but rt.jar. Highest priority will be given 
to this loader.

Extension ClassLoader :Responsible for loading classes which are 
inside the ext folder (jre\lib).

Application ClassLoader :Responsible for loading Application Level 
Classpath, path mentioned Environment Variable, etc.



b) Linking

Verify : Bytecode verifier will verify whether the generated bytecode 
is proper or not if verification fails we will get the verification error.

Prepare : For all static variables memory will be allocated and 
assigned with default values.

Resolve : All symbolic memory references are replaced with the 
original references from Method Area.



c) Initialization

This is the final phase of ClassLoading.

 Here, all static variables will be assigned with the original values.

And the static block will be executed.



2. Runtime Data Area

The Runtime Data Area is divided into five major components

Method Area : All the class-level data will be stored here, including 
static variables. There is only one method area per JVM, and it is a 
shared resource.

Heap Area : All the Objects and their corresponding instance 
variables and arrays will be stored here. There is also one Heap Area 
per JVM. 

Note:

Since the Method and Heap areas share memory for multiple threads, 
the data stored is not thread-safe.



Stack Area:

For every thread, a separate runtime stack will be created. 

For every method call, one entry will be made in the stack memory 
which is called Stack Frame. 

All local variables will be created in the stack memory. 

The stack area is thread-safe since it is not a shared resource. 

The Stack Frame is divided into three sub entities:

Local Variable Array

Operand stack

Frame data



PC Registers :Each thread will have separate PC Registers, to hold 
the address of current executing instruction once the instruction is 
executed the PC register will be updated with the next instruction.

Native Method stacks : Native Method Stack holds native method 
information. For every thread, a separate native method stack will be 
created.



3. Execution Engine

The bytecode, which is assigned to the Runtime Data Area, will be 
executed by the Execution Engine. 

The Execution Engine reads the bytecode and executes it piece by 
piece.

a) Interpreter :The interpreter interprets the bytecode faster but
executes slowly. The disadvantage of the interpreter is that when one
method is called multiple times, every time a new interpretation is
required.



b) JIT Compiler :The JIT Compiler neutralizes the disadvantage of 
the interpreter. 

The Execution Engine will be using the help of the interpreter in 
converting byte code, but when it finds repeated code it uses the JIT 
compiler, which compiles the entire bytecode and changes it to native 
code. 

This native code will be used directly for repeated method calls, which 
improves the performance of the system.



Data types



What is data type ?

Data types are used to represent the type of the variable and type of 
the expression.

Java is Strictly typed / Strongly typed / Statically typed



Java is a Strongly Typed

 Every variable has a type    

 Every expression is a type

All assignments are checked for type compatibility at compile time 





Byte

A byte is composed of 8 consecutive bits in the memory of computer. 
Each bit is a binary number of 0 or 1.



Range

Max value=127

MSB=0----> +ve value

Value- 1+2+4+8+16+32+64=127



Range:

Min value=-128

MSB=1----> -ve value

ValueAll negative values will be calculated in 2’s complement form

0000000--->1111111

+1

------------------

10000000     ===>-128



Application area

 Used to store data into Files

 Network 



short data type

The short data type is a 16-bit signed two's complement integer.

Rarely used data type.

Size: 2 bytes

Range:-32,768 to 32767.

Default value: 0



int Data type

int data type is the preferred data type when we create variables with a 

numeric value.

It will take 32 bits or 4bytes of memory.

Range:-2147483648 to 2147483647

Default value: 0



long Data type

Used when int is not large enough to hold the value, it has wider range 

than int data type.

Size :8 bytes or 64 bits

Range:-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Default value: 0



float Data type

A float data type is a single precision number format that occupies 
4 bytes or 32 bits of memory.

A float data type in java stores a decimal value with 6-7 total digits 
of precision.

Ex: float f=10.25212121212f

But it will take only 10.252121.

Range: 3.4e-038 to 3.4e+038

Default value: 0.0



double Data type

 The double data type is a double-precision 64-bit IEEE 754 floating 
points.

In Java any floating value by default it’s a double type

12-13 digits precisions it will take.

EX: double d=10.2521212121213434332222;

Output: 10.252121212121343



char Data type

The char data type is a single 16-bit Unicode character.

Ex: char c=‘A’;

Unsigned data type.

Range: 0 to 65535

Default value: \u0000



Why 16 bits for char type?

 In C/C++ uses only ASCII characters and to represent all ASCII 
characters 8-bits is enough.

Java uses Unicode system, to represent Unicode system 8 bit is not 
enough.

Unicode=ASCII + Other language symbols.



Boolean Data type

The Boolean data type has only two possible values: true and false.

Use this data type for simple flags that track true/false conditions.

This data type represents one bit of information, but its “size” isn’t 
something that’s precisely defined.



 Default value is false

 EX: 

 boolean b=true;

 boolean b=0; Not allowed



Identifiers

An identifier is a name used to identify entities like a variable, 
methods, classes and interfaces etc.

(Or)

Any name in the java program like variable name, class name, method 
name, interface name is called identifier.

Ex:

class Test  Test identifier

{

void add()  add identifier

{

int a=10;  a identifier

int b=20;  b identifier

}

}



Rules to declare identifiers
Java identifiers should not start with numbers, it may start with alphabet 

symbol and underscore symbol and dollar symbol.

An identifier should not contains symbols like + , - , . , @ , # . Only 
allowed special symbols are _ and $

Duplicate identifiers are not allowed.

Ex:

class Test

{

void add()

{

int a=10;

int a=20;    An identifier should not be duplicated.

}

}



In the java applications it is possible to declare all the predefined class 
names and predefined interfaces names as a identifier. But it is not 
recommended to use.

Keywords are not allowed to use as an identifier.

There is no length limit to define an identifier but it recommended to 
use short and meaning full names.



Variables



What is a variable??

A variable is a name of the memory location. It is the small unit of 
storage in a program.

The value stored in a variable can be varied during program 
execution.



Syntax:

datatype variable_name= value;

Ex: int a= 10;

char c=‘A’;

Note:

Java is strongly typed. So before using any variable in it is 
mandatory to declare with specific data type



Naming convention of a variable

As per documentation all user variables are small case.

All constant variables should be in uppercase letter

Ex: final double PI=3.141592653589793238;

final int DATABASE_VERSION=1;

Note:

Above rules are optional. But it is highly recommended to follow 
Java coding standards



Types of Variables

There are three types of variables in Java:

Local Variables

Instance Variables

Static Variables



Local variables

The variables which are declare inside a method or inside a block or inside a 
constructor is called local variables.

Ex: class Student 

{

public void studentInfo() 

{ 

// local variables
String name=“Ramu”; 

int age = 26; 

System.out.println("Student name : " + name); 

} 

} 



These variables are created when the block is entered or the function 
is called and destroyed after exiting from the block or when the call 
returns from the function.

Hence The scope of local variables are inside a method or inside a 
constructor or inside a block.

JVM wont provide any initial values for local variables. So
initialization of Local Variable is Mandatory. If not it will generate
compile time error.



Access modifiers (public , private , protected , default) are not allowed 
for local variables.

Local variables will be stored in stack area.



Example:

public class Test
{

public static void main(String[] args)
{

Test t=new Test();
t.m1();

}
public void m1()
{

//Declaring variable inside method..
int i=10;
System.out.println(i);

}
public  Test()
{

//Declaring variable inside constructor..
int j=20;
System.out.println(j);

}
{

//Declaring variable inside block..
int k=30;
System.out.println(k);

}
}



Instance Variables
Instance variables are declared inside class and outside of methods or constructor 

or block.

Ex: class A

{

int a;        //instance variable

public static void main(String[] args) 

{

}

}

Instance variables are created when an object of the class is created and destroyed 
when the object is destroyed.

We are able to access instance variables only inside the class any number of 
methods.



Initialization of Instance Variable is not mandatory JVM 
automatically allocates default values.

Unlike static variable, instance variables have their own separate copy 
i.e, if any changes done in instance variable that will not reflect on 
other objects.

Instance variables are not allowed inside static area directly. But using 
object it will allow.



Static variables

If any variable declared inside class and out side methods with “static” key 
word is called static variable.

Ex: public class Test
{

static int a=10;
public static void main(String[] args)
{

}

}

static variables are also called as class variable because they are associated 
with the class and common for all the instances of the class.



static variables are created at class loading time and destroyed at class 
unloading.

All static variables will be stored within method area.



Static variables are can be accessed from any area(instance or static) 
directly.

Static variables can be accessed by using objects and using class 
name.

Initialization of static variables is not mandatory



Arrays



What is an Array?

An array is a container object that holds a fixed number of values of a 
single type.

In Java, all arrays are dynamically allocated. (discussed below)

Arrays are stored in contiguous memory [consecutive memory 
locations].

Since arrays are objects in Java, we can find their length using the 
object property length. This is different from C/C++, where we find 
length using sizeof.



The variables in the array are ordered, and each has an index beginning with 0.

No –ve index concept in Java.

Java array can also be used as a static field, a local variable, or a method 
parameter.

The size of an array must be specified by int ,short , byte, and char value and not 
long.

Maximum size of an Array is 2147483647.

The direct superclass of an array type is Object.

The size of the array cannot be altered(once initialized).  





How to create an Array:

Syntax:

Type[] arrayName;

Data type can be primitive types like int, char, float,..(or) class type.

Array name can be any valid identifier.

Ex: int a[];

String s[];

Student student[];



How to initialize an Array:

Approach 1:-

Syntax:

Type variable_name[]={element1, elem2, element3,  
element4,..etc};

Ex: int a[]={10,20,30,40};



Approach 2:-

In this approach we can create an object to the Array.

Initialization is Mandatory.

Allowed data types to specify size of an Array are byte,  

short, char, int only.

Syntax:
Type Variable_name[]=new Type[Initialization];

Ex: int[] a=new int[4];

a[0]=10;

a[1]=20;

a[2]=30;

a[3]=40;



Traversing array using for loop

Ex:

public class Array

{

public static void main(String[] args) {

int a[]={10,20,30,40};

for (int i=0;i<a.length;i++)

{

System.out.println(a[i]);

}

}

}

Output:

10

20

30

40



Traversing array using for each loop

Ex:

public class Array

{

public static void main(String[] args) {

int a[]={10,20,30,40};

for (int i:a)

{

System.out.println(i);

}

}

}

Output:

10

20

30

40





Operators



Operator in java is a symbol that is used to perform operations. 

Example: +, -, *, / etc.

There are many types of operators in java which are given below:

Unary Operators

Arithmetic Operators

Shift Operators

Bitwise Operators

Logical Operators

Relational Operators

Assignment Operators.

Ternary Operators 





Operators and Operands



Unary operators

The unary operators require only one operand;

They perform various operations such as incrementing/decrementing a 
value by one, negating an expression, or inverting the value of a 
boolean.

Ex: int a=10;

a++;
++a;

Ex: int a=2;

~a;



Pre Increment and Post Increment

Pre Increment:

When placed before the variable name, the operand’s value is 

incremented instantly.

Ex: int a=10;

++a;   //11



Post Increment:

The value of the operand is incremented but the previous value is 

retained temporarily until the execution of this statement and it gets 

updated before the execution of the next statement.

Ex: int a=10;

a++; // 10



Ex:

public class Ex2
{

public static void main(String[] args)
{

int x=10;
int y=20;
int z=++x+y++;
int a=++x+x++;
int b=++y+x++;
System.out.println(z);
System.out.println(a);
System.out.println(b);

}

}

Output:

31

24

35



Arithmetic Operators

The Java programming language provides operators that perform 

addition, subtraction, multiplication, and division.

The only symbol that might look new to you is "%", which divides 

one operand by another and returns the remainder as its result.



Shift Operators

The Java programming language also provides operators that perform 
bitwise and bit shift operations on integral types.

Right shift(>>)

Left shift(<<)



Right shift(>>):

Shifts the bits of the number to the right and fills 0 on voids left as a 
result. 

The leftmost bit depends on the sign of initial number. Similar effect 
as of dividing the number with some power of two.

Ex: int a=10;

System.out.println(10>>1);

Output: 5



int a=10;



Left shift(<<):

Shifts the bits of the number to the left and fills 0 on voids left as a result. 
Ex: int a=10;

System.out.println(a<<1);

Output:20



int a=10;



Bitwise Operators:



When its operands are numbers, the & operation performs the 
bitwise AND function on each parallel pair of bits in each operand.

The ANDfunction sets the resulting bit to 1 if the corresponding bit in 
both operands is 1, as shown in the following table.



 EX: 

1101     //13

& 

1100     //12

------------------

1100     //12



Inclusive or means that if either of the two bits is 1, the result is 1. The 
following table shows the results of an inclusive or operation.



Exclusive or means that if the two operand bits are different the result 
is 1; otherwise the result is 0. 

The following table shows the results of an exclusive or operation.



Logical Operators

Logical operators are used to check whether an expression is true or 
false. They are used in decision making.

Operator Example Meaning

&& (Logical AND) expression1 && expression2
true only if both expression1

and expression2 are true

|| (Logical OR) expression1 || expression2
true if either expression1 or 

expression2 is true

! (Logical NOT) !expression
true if expression is false and 

vice versa



Ex:

public class LogicalOpr {

public static void main(String[] args) {

// && operator

System.out.println((5 > 3) && (8 > 5));  // true

System.out.println((5 > 3) && (8 < 5));  // false

// || operator

System.out.println((5 < 3) || (8 > 5));  // true

System.out.println((5 > 3) || (8 < 5));  // true

System.out.println((5 < 3) || (8 < 5));  // false

// ! operator

System.out.println(!(5 == 3));  // true

System.out.println(!(5 > 3));  // false

}

}



Relational Operators

Relational operators are used to check the relationship between two 
operands. 

Operator Description Example

== Is Equal To 3 == 5 returns false

!= Not Equal To 3 != 5 returns true

> Greater Than 3 > 5 returns false

< Less Than 3 < 5 returns true

>= Greater Than or Equal To 3 >= 5 returns false

<= Less Than or Equal To 3 <= 5 returns true



Ex:
public class RelationalOpr {

public static void main(String[] args) {

// create variables

int a = 7, b = 11;

System.out.println("a is " + a + " and b is " + b);

// == operator

System.out.println(a == b);  // false

// != operator

System.out.println(a != b);  // true

// > operator

System.out.println(a > b);  // false

// < operator

System.out.println(a < b);  // true

// >= operator

System.out.println(a >= b);  // false

// <= operator

System.out.println(a <= b);  // true

}

}



Assignment Operators

Assignment operators are used in Java to assign values to variables. 
Ex:

int age;

age = 5;

Here, = is the assignment operator. 

It assigns the value on its right to the variable on its left. That is, 5 is 
assigned to the variable age.



Operator Example Equivalent to

= a = b; a = b;

+= a += b; a = a + b;

-= a -= b; a = a - b;

*= a *= b; a = a * b;

/= a /= b; a = a / b;

%= a %= b; a = a % b;



Ternary Operator

Java ternary operator is the only conditional operator that takes three 
operands. 

It’s a one-liner replacement for the if-then-else statement and is used a 
lot in Java programming. 

We can use the ternary operator in place of if-else conditions or even 
switch conditions using nested ternary operators.

Syntax:

variable = Condition ? Expression2: Expression3





Ex:

import java.util.Scanner;

public class Max

{

public static void main(String[] args) {

System.out.println("Enter num1,num2");

Scanner scr=new Scanner(System.in);

int num1=scr.nextInt();

int num2=scr.nextInt();

int max=num1>num2?num1:num2;

System.out.println("Max number:"+max);

}

}

Output:

Enter num1,num2

200

300

Max number:300



Control statements





Unit-II



Topics

• INHERITANCE AND POLYMORPHISM: Basic concepts, Types of 
inheritance, Member access rules, Usage of this and Super key word, 
Method Overloading, Method overriding, Abstract classes, Dynamic 
method dispatch, Usage of final keyword. 

• PACKAGES AND INTERFACES: Defining package, Access 
protection, importing packages, Defining and Implementing interfaces, 
and Extending interfaces



Types of inheritance



What is Inheritance ?:

The process of acquiring properties and behaviors from one 

class to another class is called Inheritance.

Properties : variables

Behaviours : methods



 The main purpose of the inheritance is code extensibility whenever 
we are extending automatically the code is reused.

 By using extends keyword we are achieving inheritance concept.

 Inheritance is also known as is-a relationship means two classes are 
belongs to the same hierarchy.



 In inheritance one class giving the properties and behavior 
and another class is taking the properties and behavior.

In the inheritance the person who is giving the properties is 
called parent ,The person who is taking the properties is called 
child.



Types of Inheritance:

Single Inheritance

Multilevel Inheritance 

Hierarchical Inheritance 

Hybrid Inheritance 

Multiple Inheritance



Single inheritance

In single inheritance, subclasses inherit the features of one 
superclass. 

class A serves as a base class for the derived class B.



Multilevel Inheritance 

In Multilevel Inheritance, a derived class will be inheriting a 
base class and as well as the derived class also act as the base 
class to other class.

Ex:



Hierarchical Inheritance

In Hierarchical Inheritance, one class serves as a superclass for more 
than one sub class.

Ex:



Hybrid Inheritance 

 It is a mix of two or more of the above types of inheritance.

 Since java doesn’t support multiple inheritance with classes, the 
hybrid inheritance is also not possible with classes.



Multiple Inheritance

In Multiple inheritance ,one class can have more than one parent class 
and inherit features from all parent classes. 

Java does not support multiple inheritance with classes.



Object class

Every class in the java programming is a child class of Object.

The base class for all java classes is Object class.

The default package in the java programming is java.lang package.



Ex:

class Test
{  

}

====>The above class declaration is equal to below one

class Test extends Object

{

}



Member access rules



Member access rules

public: 
Members with the public access modifier are accessible from anywhere, both within 

the class hierarchy and from outside the class.

 Public members of a superclass are inherited and can be accessed in the subclass.

protected: 
Members with the protected access modifier are accessible within the same package 

and by subclasses, even if they are in a different package. 

Protected members of a superclass are inherited by the subclass.



default: 
If no access modifier is specified (default access), members are accessible within 

the same package but not outside of it. 

Default members of a superclass are inherited by the subclass if they are in the same 
package.

private: 
Members with the private access modifier are only accessible within the class 

where they are declared. 

Private members of a superclass are not inherited by the subclass



this and super key word



this Keyword



this

In Java, the "this" keyword is a reference to the current object(instance) of 
the class in which it is used. 

It can be used to refer to instance variables and instance methods of the 
current object within that object's scope. 

Here are a few common use cases for the "this" keyword in Java:

Accessing instance variables

Calling another constructor in the same class

Passing this for current object as an argument



Accessing instance variables using this

We can use "this" to distinguish between instance variables and 
method parameters or local variables when they have the same name.

Ex: 
class Student

{

String name;

String mobile;

Student(String name,String mobile)

{

this.name=name;

this.mobile=mobile;

}

}



Calling another constructor in the same class using this

When a class has multiple constructors, you can use "this" to call another 
constructor from the same class. This is useful for constructor overloading 
and code reuse.

class Employee 

{
private int value;

public Employee() {
this(0); // Calls the parameterized constructor with an 

initial value of 0
}

public Employee(int value) {
this.value = value;

}
}



Passing this for current object as an argument

"this" can be used to pass the current object as an argument to a method or another constructor.

Ex:

public class Test
{

int i=10;
public static void main(String[] args) {

Test t=new Test();
t.m1();

}
public void m1()
{

System.out.println("m1- method is calling..");
m2(this);

}
public void m2(Test t)
{

int i=100;
System.out.println("Local var    i="+i);
System.out.println("Instance var i="+t.i);

}
}



super Keyword



super is a keyword in Java which is used to

Call the Super class variable

Call the super class methods

Call the super class constructor

The most common use of the super keyword is to eliminate the 
confusion and ambiguity between super classes and subclasses that 
have methods , Variables with the same name. 



Calling Super class variable:

If the child class and parent class has same data members (Variables). 
In that case there is a possibility of ambiguity for the JVM.

To avoid above ambiguity we should use super keyword inside child 
class



Example:
class Parent

{

int X=100;

int Y=200;

}

class Child extends Parent

{

int X=300;

int Y=400;

public void add()

{

System.out.println("Parent class value ="+(super.X+super.Y));

System.out.println("Child class value ="+(X+Y));

}

}

class SuperDemo

{

public static void main(String[] args) {

Child c=new Child();

c.add();

}

}



Calling super class methods

If the child class and parent class has same data method names. In that 
case there is a possibility of ambiguity for the JVM.

To avoid above ambiguity we should use super keyword inside child 
class



Calling  super class methods:
class Parent

{

int X=100;

int Y=200;

public int  add()

{

return X+Y;

}

}

class Child extends Parent

{

int X=300;

int Y=400;

public int  add()

{

return X+Y;

}

public void printResult()

{

System.out.println("Parent class vlaue:"+super.add());//Super method to call a method

System.out.println("Child class vlaue:"+add());

}

}

class Test

{

public static void main(String[] args) {

Child c=new Child();

c.printResult();

}

}



Calling the super class constructor

super() method is used to call Super class(Parent class) constructor.

super() method call must be inside constructor only. No other method is 
allowed to call.

super() must be first statement of the constructor.

Both this(), super() methods must be call inside the Constructor. But at a 
time only one is allowed to call either this() or super().



super() method is used to call Super class(Parent class) 
constructor.

public class Parent

{

public Parent()

{

System.out.println("Parent class constructor:");

}

}

class Child extends Parent

{

public Child()

{

super();//calling parent class constructor

}

public static void main(String[] args) {

Child c=new Child();

}

}



super() must be first statement of the constructor.

class Child extends Parent

{

public Child()

{

System.out.println("Hello..");

super();

}

public static void main(String[] args) {

Child c=new Child();

}

}



super() method call must be inside constructor only. No 
other method is allowed to call.

class Child extends Parent

{

public Child()

{

}

public void m1()

{

super();

}

public static void main(String[] args) {

Child c=new Child();

}

}



Both this(), super() methods must be call inside the 
Constructor. But at a time only one is allowed to call either 
this() or super().

class Child extends Parent

{

public Child()

{

this();

super();

}

public static void main(String[] args) {

Child c=new Child();

}

}



Polymorphism



Polymorphism?

Poly=Many

Morph=forms

Polymorphism means "many forms", Performing single task in many 
ways.





Method Overloading



Method overloading:

It is a process of rewriting a method with different signatures within 
the same class is called Method overloading.

Two methods are said to be overloaded methods if and only if two 
methods are having same name but different argument list.

Method overloading can be done in one class.

We can overload any number of methods



The compiler does not consider return type when differentiating methods, so 
you cannot declare two methods with the same signature even if they have a 
different return type. 

Method resolution takes care by the Compiler. 

This process also called Compile time polymorphism (or) Static binding (or) 
Early binding.



Ex:

public class MethodOverloading

{

public int getSum(int a,int b)

{

return a+b;

}

public float getSum(float a,float b)

{

return a+b;

}

}



Method overriding



Method overriding:

Rewriting a parent class method in child class is called Method 
overriding.

Overriding concept is possible if and only if two classes should be in 
Parent – Child relationship.

In Method overriding JVM is the responsible for Method resolution 
based on object type.

This process also called as Dynamic binding (or) Late binding (or) 
Dynamic polymorphism.



Rules for overriding

In method overriding method name and method signature should be same.

Return type: Must be same (optionally covariant type )

Modifier : Method scope should not decrease

Scope order as follows : public>protected>default>private

Possible cases:
public         public

protected  protected, public

default       default, protected, public

private       (Private methods are can not be override)



Static methods: For static Methods overriding concept is not applicable. 
But Method hiding is possible.

In Method hiding compiler is the responsible for method resolution.

Ex: Method hiding
class Parent

{

public static void m1()

{

System.out.println("Parent class method");

}

}

class Child extends Parent

{

public  static void m1()

{

System.out.println("Child class method");

}

}



final Methods: final Methods cannot be overridden..

final  final ,Non final (Overriding is not possible)

Non final   final (Overriding is possible)



Dynamic method dispatch



Dynamic method dispatch



Usage of final keyword



final is a keyword or modifier applicable  to 

 variables (for all instance, Static and local variables).

 methods 

classes



final Variables:

If a variable is declared with final keyword, its value can’t be 

modified, and we can make a variable as a constant. 

We must initialize a final variable, otherwise compiler will 

generates compile-time error. 

As per Java documentation final variables naming convention 

should be in all uppercase, use underscore to separate words.

Ex: public static final double PI=3.141592653589793



Initializing a final variable :

There are three ways to initialize a final variable :

You can initialize a final variable when it is declared. This approach is 
the most common

A blank final variable can be initialized inside instance block or inside 
constructor. If you have more than one constructor in your class then it 
must be initialized in all of them, otherwise compile time error will be 
thrown.

A blank final static variable can be initialized inside static block.



Ex:

public class FinalVariable
{

public final double PI=3.141592653589793;//Final Variable 
initialization at declaration

public final int I;
public final int J;
public static final int DATABASE_VERSION;
FinalVariable()
{

I=10;// Final Variable initialization inside constructor block
}
{

J=20;// Final Variable initialization inside instance block
}

static  {
DATABASE_VERSION=2;// Final Variable initialization 

inside static block

}   

}



final Class

When a class is declared with final keyword, it is called a final class.

If a class is declared as final, then we cannot inherit that class i.e., we cannot 
create any child class for that final class.

Ex: You can not  create child class to the String class . Because String is   
the final class.



Ex:

final class Parent

{

}

class Child  extends Parent

{

//Child class is not possible

//Compile time error

}



 Every method present inside a final class is always final by 
default but every variable present inside the final class need 
not be final.

Example:

final class Demo

{

int a=10; 

void m1()

{

System.out.println("m1 method is final");

System.out.println(a=a+1);

}

public static void main(String[] args)

{

Demo d=new Demo(); 

d.m1();

}

}



final methods

If a method is declared with final keyword, it is called a final 
method. A final method cannot be overridden.

If you want to restrict implementation of a method then you can 
declare it as final.

For example in Object class we can override some methods like 
equals(), toString() but you cant override method like wait(), 
notify(), notifyAll() because these methods are declared as final.



Eample:

class Parent
{   

public  void m1()
{

System.out.println("Parent class method ... m1()");
}

public final void m2()
{

System.out.println("It is method -2");
}

}

class Child  extends Parent
{

public void m1()
{

System.out.println("Hello this is child class method..m1()");
}

public void m2()
{

//Compile thime error
}

}



Note:

The main advantage of final modifier is ,We can achieve security as 
no one can be allowed to change our implementation.

But the main disadvantage of final keyword is we are missing key 
benefits of Oops like inheritance and polymorphism. 

Hence if you have specific requirement you can use but it  never 
recommended to use final modifier.



Abstract classes



Abstraction



What is Abstraction?

In Object-oriented programming, abstraction is a process of hiding 

the internal implementation details from the user, only the essential 

functionality will be provided to the user.

Abstraction can be achieved with either abstract classes or interfaces



Normal methods vs Abstract Methods

Normal methods:

Normal method contains declaration as well as method 

definition

Ex: public void method()
{

---------
--------body;
---------

}



Abstract methods:

The method which is having declaration but not definition such type of 
methods are called abstract methods. 

Every abstract method should end with “;”.

The child classes are responsible to provide implementation for parent 
class abstract methods.

Ex:  abstract void method(); //abstract method

Note: The methods marked abstract end in a semicolon rather than 
curly braces.



Normal classes vs Abstract classes
Normal classes:

Normal class is a java class contains only normal methods.

Ex: class Test

{

void m1()

{

--

}

void m2()

{

--

}

}



Abstract class:

If a class contains at least one abstract method then it is a abstract class.

To specify the particular class is abstract and particular method is abstract 
method to the compiler use abstract modifier.

It is not possible to create an object to the Abstract class. Because it 
contains the unimplemented methods.

For any class if we don’t want instantiation then we have to declare that 
class as abstract i.e., for abstract classes instantiation (creation of object) is 
not possible.



Ex:

abstract class Test

{

abstract public void m1();

public void m2()

{

} 

}



Abstract method (all) implementation should be done in Child class.

Ex: 

abstract class Parent
{

abstract public void m1(); 

}

class Demo extends Parent
{   

public void m1() 
{

System.out.println("Method m1() implementation");

}
}



Even though class does not contain any abstract method still we can 
declare the class as abstract.

Abstract class contain zero or more number of abstract methods.

For abstract classes it is not possible to create an object



Ex:

abstract class Test

{

void m1()

{

System.out.println("m1-method");

}

void m2()

{

System.out.println("m2-method");

}

public static void main(String[] args)

{

//Compile time Error

t.m1();

}

};

Test t=new Test()



Interfaces



Interface is also one type of class and It contains only abstract methods.

All interface methods are implicitly public and abstract. In other words, you 
do not need to actually type the public or abstract modifiers in the method 
declaration, but the method is still always public and abstract.

For the every interface compiler will generates .class files 

Each and every interface by default abstract hence it is not possible to create 
an object.

Interfaces not alternative for abstract class it is extension for abstract classes.



Interface contains only abstract methods means unimplemented 
methods.

Interface also called 100% Abstract class.

Interfaces giving the information about the functionalities or Services 
And it will hide the information about internal implementation.

To provide implementation for abstract methods we have to use 
implements Keyword

For the interfaces also  inheritance concept is applicable.



By using interface keyword we can declare interfaces in Java

Syntax:

interface Interface_Name

{

--

}

Ex: interface Demo

{

void m1();

}



Ex:

interface InterfaceDemo

{

void m1();

void m2();

void m3();

}

abstract interface InterfaceDemo

{
public abstract void m1();
public abstract void m2();
public abstract void m3();

}



Every variable in Interface by default public static final

interface InterfaceDemo

{

int i=10;

} 

public static final int i=10;



interface InterfaceDemo1

{

public void method1();

public void method2();

}

interface InterfaceDemo2 extends InterfaceDemo1

{

public void method3();

public void method4();

}

class Demo implements InterfaceDemo2

{   

@Override

public void method1() {

System.out.println("InterfaceDemo1- method1() implementation");

}

@Override

public void method2() {

System.out.println("InterfaceDemo2- method2() implementation");

}

@Override

public void method3() {

System.out.println("InterfaceDemo3- method3() implementation");

}

@Override

public void method4() {

System.out.println("InterfaceDemo4- method4() implementation");

}

}

Interfaces with 
inheritance



interface InterfaceDemo1

{

public void method1();    

}

interface InterfaceDemo2 

{

public void method2();

public void method3();   

}

class Demo implements InterfaceDemo1,InterfaceDemo2

{

@Override

public void method1() {

System.out.println("InterfaceDemo1- method1() implementation");

}

@Override

public void method2() {

System.out.println("InterfaceDemo2- method2() implementation");

}

@Override

public void method3() {

System.out.println("InterfaceDemo3- method3() implementation");

}  

}

Multiple inheritance 
with respect to 

Interfaces



Packages



Access control



Access modifiers:

The access modifiers in Java talks about the accessibility or scope of a 
Variables ,Methods, Constructor, or Class.

Depends on our requirements we can change the access level.

In Java we have 4 types of access modifiers:

private

Default(No access modifier)

protected

public



private:

Private modifier is applicable to methods , constructor and data 
members(Variables).

 private members are accessible only within the class in which 
they are declared. Out side of the class we cannot access.

We cannot declare class  with private modifier. But it is possible to 
declare for inner class.

private modifier having less scope to comparative other access 
modifiers i.e, more restrictive.



default modifier(No modifier):

If we are not specifying any access modifier for a class , method or 
data member ,It is said to be having the default access modifier by 
default.

The data members, class or methods which are not declared using any 
access modifiers i.e. having default access modifier are 
accessible only within the same package.

default modifier having more scope than private and less scope than 
protected and public modifiers.



protected:

The methods or data members declared as protected are accessible 
within same package or sub classes in different package.

protected modifier having more scope than default, private 
modifiers and less scope than public modifier.



public:

The public access modifier has the more scope among all other 
access modifiers.

Classes, methods or data members which are declared as public 
are accessible from every where in the program.

 There is no restriction on the scope of a public data members.



Scope order:

public > protected > default > private





Packages



Information regarding packages:

The package contains group of related classes , interfaces, sub 
packages.

The package is an encapsulation mechanism it is binding the related 
classes and interfaces.

We can declare a package with the help of package keyword.

Package is nothing but physical directory (folder) structure and it is 
providing clear-cut separation between the project modules.

Whenever we are dividing the project into the packages(modules) the 
shareability of the project will be increased.



Syntax:

package package_name; 

Ex:  package com.mlrit;

Packages are divided into two types

Predefined packages

User defined packages



Predefined packages:

Java predefined packages contains all predefined classes and interfaces.

Ex:

java.lang , 

Java.io, 

Java.awt ,

Java.util

Java.net.. etc.



Java.lang:

The most commonly required classes and interfaces to write a sample 
program is encapsulated into a separate package is called java.lang
package.

It is a default package , No need to import this package.

Ex: String(class) 

StringBuffer(class) 

Object(class) 

Runnable(interface) 

Cloneable(nterface)



Java.io :

The classes which are used to perform the input output operations that 
are present in the java.io packages.

Ex: 

FileInputStream(class)

FileOutputStream(class) 

FileWriter(class)

FileReader(class)

Serializable(Inteface)



java.net :

The classes which are required for connection establishment in the network that 
classes are present in the java.net package.

Ex:

HttpURLConnection

Socket

URL

ServerSocket

InetAddress

SocketOptions (Interface)



Java.util

Contains the collections framework, legacy collection classes, event model, 
date and time facilities, internationalization, and miscellaneous utility 
classes.

Ex:
Calender

Date

Scanner

Arrays 

ArrayList

Collection<E> (Interface)

Iterator<E> (Interface)

.. etc



java.sql

Provides the API for accessing and processing data stored in a data 
source (usually a relational database) using the JavaTM programming 
language.

Ex: 

Date

DriverManager

Blob (Interface)



java.awt:

The classes which are used to prepare graphical user interface those 
classes are present in the java.awt package.

Ex: Button     (class)

Checkbox(class) 

Choice (Class) 

List      (class)

ActiveEvent (Interface)



User defined packages:

The packages which are defined by the user are called user defined 
packages.

In the single source file it is possible to take the only one package. If we 
are trying to take two packages at that time  compiler raise a compilation 
error.

In the source file it is possible to take single package statement.

While taking package name we have to follow some coding standards.



Rules to follow while writing package:

The package name is must reflect with your organization name and 
package name is reverse of the organization domain name.

Domain name: www.example.com 

Package name: package com.example;



The package must be the first statement of the source file and it is possible 
to declare at most one package within the source file .

The import statement must be in between the package and class statement. 
And it is possible to declare any number of import statements within the 
source file.

The class declaration  must be after package and import statement and it is 
possible to declare any number of class within the source file.



It is possible to declare at most one public class.

It is possible to declare any number of non-public classes.

The package and import statements are applicable for all the classes 
present in the source file.

It is possible to declare comments at beginning and ending of any line of 
declaration it is possible to declare any number of comments within the 
source file.



Advantages of Packages:

Java package is used to categorize the classes and interfaces so that 
they can be easily maintained.

Java package removes naming collision or naming conflicts.

 Packages provide reusability of code .

Java package provides access protection.



Path and Class Path:

Path and Classpath both are operating system level environment 
variables.

 Path is used define where the system can find the executables (.exe) or 
bin files.

 Classpath is used to specify the location .class files.



Static import

Static import allows you to access the static member of a class directly 
without using the fully qualified name.

Example:

import static java.lang.Math.*;
class Test
{

public static void main(String[] args)
{

System.out.println(sqrt(16));
System.out.println(min(20,30));

}
}



Unit-III



IO Streams



Stream?

A stream is a sequence of data.

In Java, Stream is a channel or a path along which data flows 
between source and destination. 

Java brings various Streams with its I/O package that helps the user 
to perform all the input-output operations.

 A stream can represent many different kinds of sources and
destinations, including disk files, devices, other programs, and
memory arrays.

Streams support many different kinds of data, including simple bytes,
primitive data types, localized characters, and objects.





Standard(Default) IO Streams in Java

• There are three standard IO Streams in Java

System.in

System.out

System.err



Types of Streams

Depending on the type of operations, streams can be divided 
into two primary classes.

InputStream

OutputStream



InputStream
These streams are used to read data that must be taken as an input from 

a source array or file or any peripheral device.

The Java InputStream class is the base class (superclass) of all input 
streams in the Java IO API. 

Each subclass of InputStream typically has a very specific use, but can 
be used as an InputStream. 

Example:
FileInputStream, 
BufferedInputStream, 
ByteArrayInputStream etc.



OutputStream

These streams are used to write data as outputs into an array or file or 
any output peripheral device.

The Java OutputStream class is the base class (superclass) of all 
output streams in the Java IO API. 

Each subclass of OutputStream typically has a very specific use, but can 
be used as an OutputStream

Example:
FileOutputStream,
 BufferedOutputStream,
 ByteArrayOutputStream etc.



Types of Streams(Based on file types)

Based on file types Streams can be divided into two primary 
classes

ByteStream

CharacterStream



ByteStreams:

• Programs use byte streams to perform input and output of (8-bit) 
bytes.

• All byte stream classes are descended from InputStream and 
OutputStream.



CharacterInputStream:

• Java Character streams are used to perform input and output 
for 16-bit Unicode.



Byte Based Character Based
Input Output Input Output

Basic InputStream OutputStream Reader
InputStreamReader

Writer
OutputStreamWriter

Arrays ByteArrayInputStream ByteArrayOutputStream CharArrayReader CharArrayWriter

Files FileInputStream
RandomAccessFile

FileOutputStream
RandomAccessFile

FileReader FileWriter

Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter

Buffering BufferedInputStream BufferedOutputStream BufferedReader BufferedWriter

Filtering FilterInputStream FilterOutputStream FilterReader FilterWriter

Parsing PushbackInputStream
StreamTokenizer

PushbackReader
LineNumberReader

Strings StringReader StringWriter

Data DataInputStream DataOutputStream

Data - Formatted PrintStream PrintWriter

Objects ObjectInputStream ObjectOutputStream

Utilities SequenceInputStream

http://tutorials.jenkov.com/java-io/inputstream.html
http://tutorials.jenkov.com/java-io/outputstream.html
http://tutorials.jenkov.com/java-io/reader.html
http://tutorials.jenkov.com/java-io/inputstreamreader.html
http://tutorials.jenkov.com/java-io/writer.hml
http://tutorials.jenkov.com/java-io/outputstreamwriter.html
http://tutorials.jenkov.com/java-io/bytearrayinputstream.html
http://tutorials.jenkov.com/java-io/bytearrayoutputstream.html
http://tutorials.jenkov.com/java-io/chararrayreader.html
http://tutorials.jenkov.com/java-io/chararraywriter.html
http://tutorials.jenkov.com/java-io/fileinputstream.html
http://tutorials.jenkov.com/java-io/randomaccessfile.html
http://tutorials.jenkov.com/java-io/fileoutputstream.html
http://tutorials.jenkov.com/java-io/randomaccessfile.html
http://tutorials.jenkov.com/java-io/filereader.html
http://tutorials.jenkov.com/java-io/filewriter.html
http://tutorials.jenkov.com/java-io/pipedinputstream.html
http://tutorials.jenkov.com/java-io/pipedoutputstream.html
http://tutorials.jenkov.com/java-io/pipedreader.html
http://tutorials.jenkov.com/java-io/pipedwriter.html
http://tutorials.jenkov.com/java-io/bufferedinputstream.html
http://tutorials.jenkov.com/java-io/bufferedoutputstream.html
http://tutorials.jenkov.com/java-io/bufferedreader.html
http://tutorials.jenkov.com/java-io/bufferedwriter.html
http://tutorials.jenkov.com/java-io/filterinputstream.html
http://tutorials.jenkov.com/java-io/filteroutputstream.html
http://tutorials.jenkov.com/java-io/filterreader.html
http://tutorials.jenkov.com/java-io/filterwriter.html
http://tutorials.jenkov.com/java-io/pushbackinputstream.html
http://tutorials.jenkov.com/java-io/streamtokenizer.html
http://tutorials.jenkov.com/java-io/pushbackreader.html
http://tutorials.jenkov.com/java-io/linenumberreader.html
http://tutorials.jenkov.com/java-io/stringreader.html
http://tutorials.jenkov.com/java-io/stringwriter.html
http://tutorials.jenkov.com/java-io/datainputstream.html
http://tutorials.jenkov.com/java-io/dataoutputstream.html
http://tutorials.jenkov.com/java-io/printstream.html
http://tutorials.jenkov.com/java-io/printwriter.html
http://tutorials.jenkov.com/java-io/objectinputstream.html
http://tutorials.jenkov.com/java-io/objectoutputstream.html
http://tutorials.jenkov.com/java-io/sequenceinputstream.html


File Handling
File handling in Java implies reading data from the file and writing

data to a file.

The File class from the java.io package, allows us to work with
different formats of files.

In order to use the File class, you need to create an object of the class
and specify the filename or directory name.

Ex: 
// Import the File class
import java.io.File;
// Specify the filename
File obj = new File(“sample.txt");



File and Directory

A file is a named location that can be used to store related information. 

Ex: main.java is a Java file that contains information about the Java 
program.

A directory is a collection of files and subdirectories. A directory inside a 
directory is known as subdirectory.



File handling methods

Method Type Description

canRead() Boolean It tests whether the file is readable or not

canWrite() Boolean It tests whether the file is writable or not

createNewFile() Boolean This method creates an empty file

delete() Boolean Deletes a file

exists() Boolean It tests whether the file exists

getName() String Returns the name of the file

getAbsolutePath() String Returns the absolute pathname of the file

length() Long Returns the size of the file in bytes

list() String[] Returns an array of the files in the directory

mkdir() Boolean Creates a directory



Example: Creating a File

import java.io.IOException;
public class FileDemo
{

public static void main(String[] args)
{

File f=new File("sample.txt");
if(f.exists())
{

System.out.println("File already existed..");
}
else
{

try
{

f.createNewFile();
System.out.println("File created successfully..");

} catch (IOException e) {
e.printStackTrace();

}
}

}
}



Example: No of Files and Directories in a Directory

import java.io.File;

public class Ex2

{

public static void main(String[] args)

{

File f1=new File(".");

String[] list=f1.list();

int count=0;

for (String name:list)

{

count++;

File f2=new File(name);

if(f2.isFile())

{

System.out.println("File      :"+name);

}

else if (f2.isDirectory())

{

System.out.println("Directory:"+name);

}

}

System.out.println("No of files and dir :"+count);

}

}



Example: File Information
import java.io.File;

import java.util.Scanner;

public class Ex3

{

public static void main(String[] args) {

System.out.println("Enter your file name");

Scanner scr=new Scanner(System.in);

String fname=scr.next();

File f=new File(fname);

if(f.exists())

{

System.out.println("Size of the file :"+f.length());

System.out.println("Absolute path    :"+f.getAbsolutePath());

if(f.canRead())

System.out.println(f.getName()+":  Is readable file");

else

System.out.println(f.getName()+":  Is not readable file");

if(f.canWrite())

System.out.println(f.getName()+":  Is writeable file");

else

System.out.println(f.getName()+":  Is not writeable file");

if(f.canExecute())

System.out.println(fname+":  Is Executable file");

else

System.out.println(fname+":  Is not Executable file");

}

else

{

System.out.println("No such file existed..");

}

}

}



Example: Deleting Specified File

import java.io.File;

import java.util.Scanner;

public class Ex4

{

public static void main(String[] args)

{

System.out.println("Enter your file name");

Scanner scr=new Scanner(System.in);

String fname=scr.next();

File f=new File(fname);

if(f.exists())

{

if(f.delete())

{

System.out.println(f.getName()+" is deleted successfully..");

}

else

{

System.out.println(f.getName()+" is not deleted..");

}

}

else

{

System.out.println("No such file existed..");

}

}

}



Exception Handling



What is an Exception?

It is an unexpected unwanted event which disturbs entire execution  
flow of the program.

Ex:

SleepingException

TirePuncharedException
PowerCutException

ArithmaticException

Exception also called as  runtime error.



Exceptions Hierarchy



All exceptions and errors  are sub classes of class Throwable.

Throwable class having two child classes.

Error

Exceptions

Both Error and Exceptions are present in java.lang package.



Error

Error is an event caused by  lack of System resources.

These are exceptional conditions that are external to the application, 
and that the application usually cannot anticipate .

Which cannot get recovered by any handling techniques. 

It surely cause termination of the program abnormally.

 Errors belong to unchecked type and mostly occur at runtime. 

Ex:

OutOfMemoryError

StackOverFlowError



Exception:

An exception is an event, which occurs during the execution of a 
program, that disrupts the normal flow of the program's 
instructions.

These are recoverable by using programing techniques.

Exceptions are divided into two types

UnCheckedExceptions (RuntimeExceptions)

CheckedExceptions (CompileTimeExceptions)



UnChecked Exceptions

Also called as Runtime Exceptions

Compiler does not check this type of Exceptions

This type of programs are not connected to External resources(like files, 
printers, scanner).

Exception handling is optional i.e, If we handle the exceptions program 
terminates normally, If not it leads to abnormal termination.



Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsExceptio
n

Array index is out-of-bounds.(out of range)

InputMismatchException If we are giving input is not matched for storing input.

ClassCastException If the conversion is Invalid.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalThreadStateException Requested operation not compatible with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

StringIndexOutOfBoundsExceptio
n

Attempt to index outside the bounds of a string.



Examples for UnChecked Exceptions:

i) ArrayIndexOutOfBoundException:

int a[]={10,20,30}

System.out.println(a[3]); // Array index out of bound exception

ii) NumberFormatException:

String s=“ten”

int i=Integer.parseInt(s);

System.out.println(i); // Number Format Exception



iii) Arithmetic Exception:

System.out.println(100/0);

iv)NullPointerException:

String s=null;

System.out.println(s); // Null Pointer Exception



v) IllegalArgumentException

public class Ex1
{

public static void main(String[] args)
{

for (int i=0;i<10;i++)
{

System.out.println("Hello");
try {

Thread.sleep(-10);
} catch (InterruptedException e) {

e.printStackTrace();
}

}

}
}



Checked Exceptions

The Exceptions which are checked by the compiler at compilation time for 
the proper execution of the program at runtime is called Checked 
Exceptions.

Also called compile time exceptions.

External resources (like files , printers , scanners) may connected to the 
programs.

Exception handling is mandatory for this type of Exceptions . If not handled 
even .class file wont generate.



Exception Description

ClassNotFoundException If the loaded class is not available

CloneNotSupportedException
Attempt to clone an object that does not implement the 
Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException If the requested method is not available.



Exception handling?

Exception handling means it is not repairing an exception we are 
providing alternative way to continue rest of the program normally.

The program must be graceful termination.

There are two types of Exception handling techniques.

Default Exception Handling

Customized Exception Handling



Default Exception Handling

When ever an exception raised in the method in which it is raised is 
responsible for the preparation of exception object by including the 
following information.
 Name of Exception.

 Description.

 Location of Exception.

After preparation of Exception Object, The method handovers the 
object to the JVM.

 JVM will check for Exception handling code in that method 



If the method doesn’t contain any exception handling code then JVM terminates 
that method abnormally and removes corresponding entry from the stack.

This process will be continued until main() method.

 If the main method also doesn’t contain any exception handling code then JVM 
terminates main method abnormally.

Just before terminating the program JVM handovers the responsibilities of 
exception handling to default exception handler.

 Default exception handler prints the error in the following format.
Name of Exception 
Description stackTrace



Ex: 

class Test
{

public static void main(String[] args)
{

doStuff();
}
public static void doStuff()
{

doMoreStuff();
}
public static void doMoreStuff()
{

System.out.println(10/0);
}

}



Exception Handling:

Providing alternative way to execute  rest of the program normally.

Exception Handling is normal Execution of the program or graceful 
termination of the program at runtime.

Exception  class present in java.lang package.

We can handle the exceptions in two ways.

By using try-catch blocks

By using throws keyword.



In Java we have 5 key words to  handle the Exceptions:-

try

catch

finally

throw

throws



Exception handling by using try-catch block:

In Exception Handling try block contains risky code of the program and catch block 

contains handling code of the program.

Catch block code is a alternative code for Exceptional code. If the exception is raised 

the alternative code is executed fine then rest of the code is executed normally.

Syntax:

try
{

Risky code;
}
Catch(ExceptionName reference_variable)
{

Alternative code if Exception raised;
}



class ExceptionDemo

{

public static void main(String[] args) {

System.out.println("statement-1");

System.out.println("statement-2");

System.out.println("statement-3");

System.out.println(10/0);

System.out.println("statement-4");

System.out.println("statement-5");

}

}

Without try-catch



With try-catch
class ExceptionDemo

{

public static void main(String[] args) {

System.out.println("statement-1");

System.out.println("statement-2");

System.out.println("statement-3");

try {

System.out.println(10/0);

}

catch (ArithmeticException e)

{

System.out.println("Divide / Zero exception");

}

System.out.println("statement-4");

System.out.println("statement-5");   output:

}

}



Multiple catch() blocks:

A try block can be followed by one or more catch blocks. 

Each catch block must contain a different exception handler. So, if you have 
to perform different tasks at the occurrence of different exceptions.

At a time only one exception occurs and at a time only one catch block is 
executed.

All catch blocks must be ordered from most specific to most general, i.e. 
catch for ArithmeticException must come before catch for Exception.



Syntax:
try{
}
catch(Exception1 e)
{
}
catch(Exception2 e)
{
}
.
.
etc



finally:

It is never recommended to write clean up code in try block. Because try  block 
may execute or may not execute.

And never recommended to use catch block for clean up code , because if there 
is no exception catch block wont execute.

The finally keyword is used in association with a try/catch block and 
guarantees that a section of code will be executed, even if an exception is 
thrown.

The finally block always executes when the try block exits. This ensures 
that the finally block is executed even if an unexpected exception occurs. 

https://www.geeksforgeeks.org/flow-control-in-try-catch-finally-in-java/


Putting cleanup code in a finally block is always a good practice, 
even when no exceptions are anticipated.

Important: The finally block is a key tool for preventing resource 
leaks



Possible combinations (try-catch()-finally())

• Try-catch()  Allowed

• Try-finally()  Allowed

• Try-catch-finally()    Allowed

• Try-finally()-catch() Not allowed

• Catch()-finally()  Not allowed



throw:

The main purpose of the throw keyword is to creation of Exception object 
explicitly either for predefined or user defined .

Throw keyword works like a try block. The difference is try block is 
automatically find the situation and creates a Exception object implicitly. 
Whereas throw keyword creates a Exception object explicitly.

throw keyword must call within the method.

By using throw keyword we can throw only one Exception object at a 
time.



Example:

if (withdrawal>balance)

{

throw new InsufficientFunds("No funds..");

}



Creating user defined Exceptions

In Exception Handling user can defined their own Exceptions.

To create user defined Exceptions we need to create a child class to 
RuntimeException class or Exception class.

Each and every Exception contains two constructors
default constructor
parameterized constructor

Naming convention: Every user defined exception name must be        
suffix of Exception

Ex:

InsufficientFundsException



Example:
public static void checkBalance(double withdrawal)

{

double balance=1234567.50;

if (withdrawal>balance)

{

throw new InsufficientFunds("No funds..");

}

else

{

balance= balance-withdrawal;

System.out.println("You're A/C balance : "+balance);

}

}

}

class InsufficientFunds extends RuntimeException

{

InsufficientFunds(String str)

{

super(str);

}

}



throws:

If any Checked Exception raised in a program that must be handle by 
try-catch or throws keyword.

Ex:
class ExceptionDemo

{

public static void main(String[] args)

{

Thread.sleep(100); // Checked Exception

}

}



Handling Exception with try-catch:

Ex:
public static void main(String[] args)
{

try 
{

Thread.sleep(100);
}
catch (InterruptedException e)
{

e.printStackTrace();
}      

}



Handling Exception with throws keyword:

Ex:
public static void main(String[] args) throws InterruptedException

{

Thread.sleep(100);

}

The main objective of the throws keyword is to delegate responsibilities to 
the caller method about Exception handling.

throws keyword  bypass the Exception but it doesn’t prevent abnormal 
termination.



By using throws keyword we can throw multiple Exceptions at a time.

We can use throws keyword in Method declaration.

throws keyword is applicable only Throwable objects but not Normal 
objects.

throws keyword is required only for checked exception and 
usage of throws keyword for unchecked exception is 
meaningless.



Differences b/w throw and throws

No. throw throws

1) Java throw keyword is used to explicitly throw an 
exception.

Java throws keyword is used to declare an exception.

2) Checked exception cannot be propagated using throw 
only.

Checked exception can be propagated with throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method signature.

5) You cannot throw multiple exceptions. You can declare multiple exceptions e.g.
public void method()throws IOException,SQLException.



Unit-IV



Multithreading



Multitasking

Executing multiple tasks at a time is called Multi tasking.

(Or)

Ability to execute more than one task at the same time is known as 
multitasking.

There are two types of Multi tasking

Process based multitasking (Multitasking)

Thread based multitasking(Multithreading)



Process based multitasking

In process based multitasking two or more processes and programs 
can be run concurrently.

In process based multitasking a process or a program is the smallest 
unit.

Example:

We can listen to music and browse internet at the same time. The 
processes in this example are the music player and browser.



Thread based multitasking

In thread based multitasking two or more threads can be run 
concurrently.

In thread based multitasking a thread is the smallest unit.

Example:

While you are typing, multiple threads are used to display your
document, asynchronously check the spelling and grammar of your
document, generate a PDF version of the document.



Thread

A thread is a flow of execution in a program.

A thread is a part of the program.

Thread is a tiny program running continuously. It is sometimes called 
as light-weight process.

Thread class is defined in java.lang package



Multithreading v/s Multiprocessing



Defining Instantiating, Starting the Thread

We can define instantiate and starting a thread by using the following 2-
ways.

By extending Thread Class.

By implementing Runnable interface.



By extending Thread Class

We can create a thread by creating a child class to the Thread class.

And we should override a method i.e, run().

We can define a thread job inside run().

By calling Thread class start() method we can start execution of a 
thread



Example:

class Mythread extends Thread

{

@Override

public void run()

{

super.run();

for (int i=0;i<10;i++)

{

System.out.println("Thread is executing");

}

}

}



Thread Scheduler:

If multiple threads are there then which thread will get chance first for 
execution will be decided by “Thread Scheduler”. 

Thread Scheduler is the post of JVM. 

The behavior of thread scheduler is vendor dependent and hence we 
can’t expect exact O/P for the program.



Difference between t.start() & t.run()

In the case of t.start() a new thread will be created and which is 
responsible for the execution of run().

 But in the case of t.run() no new thread will be created and run() 
method will be executed just like a normal method by the main thread.



Importance of Thread Class start() method

After Creating thread object compulsory we should perform 
registration with in the Thread scheduler. 

This will take care by start() of Thread class, So that the programmers 
has to concentrate on only job.

With out executing Thread class start() method there is no chance of 
start a new Thread in java.

start()

{

Register our thread with in the thread scheduler.

Invoke run() method.

}



By Implementing Runnable Interface

A Thread can be created by extending Thread class also. But Java allows
only one class to extend, it wont allow multiple inheritance.

 So it is always better to create a thread by implementing Runnable
interface. Java allows you to implement multiple interfaces at a time.

By implementing Runnable interface, you need to provide implementation
for run() method.



Runnable(Interface)

Thread(class)      

MyThread MyRunnableClass



To run this implementation class, create a Thread object, pass
Runnable implementation class object to its constructor. Call start()
method on thread class to start executing run() method.

Implementing Runnable interface does not create a Thread object, it
only defines an entry point for threads in your object. It allows you to
pass the object to the Thread(Runnable implementation) constructor.



Example:

class MyRunnableThread implements Runnable

{

@Override

public void run() {

System.out.println("Runnable thread job");

}

}

public class ThreadDemo

{

public static void main(String[] args)

{        

MyRunnableThread mythread=new MyRunnableThread();

Thread t=new Thread(mythread);

t.start();   

}

}



Thread lifecycle states

A thread can be in one of the five states. According to sun, there is only 
4 states in thread life cycle in java.

New

Runnable

Running

Non-Runnable (Blocked)

Terminated





New:
The thread is in new state if you create an instance of Thread class but 
before the invocation of start() method.
Runnable:
The thread is in runnable state after invocation of start() method, but the 
thread scheduler has not selected it to be the running thread.
Running:
The thread is in running state if the thread scheduler has selected it.
Non-Runnable (Blocked):
This is the state when the thread is still alive, but is currently not eligible to 
run.
Terminated:
A thread is in terminated or dead state when its run() method exits.



Thread priorities

Every Thread in java has some property. 

It may be default priority provided by the JVM or customized priority 
provided by the programmer.

The valid range of thread priorities is 1 – 10. Where 1 is lowest priority 
and 10 is highest priority.

The default priority of main thread is 5. The priority of child thread is 
inherited from the parent.



Thread Scheduler will use priorities while allocating processor the 
thread which is having highest priority will get chance first and the 
thread which is having low priority.

If two threads having the same priority then we can’t expect exact 
execution order it depends upon Thread Scheduler.

The thread which is having low priority has to wait until completion of 
high priority threads.



Three constant values for the thread priority.

MIN_PRIORITY     =  1

NORM_PRIORITY =  5

MAX_PRIORITY    =  10



Thread class defines the following methods to get and set priority of a Thread.
public final int getPriority()

public final void setPriority(int priority)

Here ‘priority’ indicates a number which is in the allowed range of 1 – 10.

 Otherwise we will get Runtime exception saying “IllegalArgumentException”.

Ex: t.setPriority(11);    // IllegalArgumentException



Thread class methods



sleep(long millis)

public static void sleep(long millis) throws InterruptedException

Causes the currently executing thread to sleep (temporarily cease
execution) for the specified number of milliseconds, subject to the precision
and accuracy of system timers and schedulers.

The thread does not lose ownership of any monitors.

Parameters:

millis - the length of time to sleep in milliseconds

Throws:

IllegalArgumentException : If the value of millis is negative

InterruptedException : If any thread has interrupted the current thread. The 
interrupted status of the current thread is cleared when this exception is thrown.



class Child extends Thread
{

@Override
public void run()

{
super.run();
for (int i=0;i<10;i++)
{

System.out.println("Hello MLRIT 
:"+i);

try {
sleep(1000);

} catch (InterruptedException e) 

{
e.printStackTrace();

}
}

}
}

Example : sleep()

public class SleepDemo

{

public static void main(String[] args)

{

Child c=new Child();

c.start();

}

}

Output:
Hello MLRIT :0
Hello MLRIT :1
…
Hello MLRIT :9



activeCount():

This method is used to find out the number of threads in active state.

Synatx:

public static int activeCount();

By default active count prints  2.Which means  two threads will execute 
always i.e Main,Monitor



import java.util.Set;

public class ActiveThreadDemo

{

public static void main(String[] args)

{

System.out.println(Thread.activeCount());

Aa a=new Aa();

a.setName("Ram");

a.start();

System.out.println("After starting A thread"+Thread.activeCount());

B b=new B();

b.setName("Bheem");

b.start();

System.out.println("After starting B thread"+Thread.activeCount());

Set<Thread> threadSet = Thread.getAllStackTraces().keySet();

for ( Thread t : threadSet){

if ( t.getThreadGroup() == Thread.currentThread().getThreadGroup()){

System.out.println("Thread :"+t+":"+"state:"+t.getState());

}

}

}

}

class Aa extends Thread

{

public void run()

{

try {

Thread.sleep(20000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

class B extends Thread

{

public void run() {

try {

Thread.sleep(20000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}



yield():

Suppose there are three threads t1, t2, and t3. 

Thread t1 gets the processor and starts its execution and thread t2 and t3 are 
in Ready/Runnable state. 

The completion time for thread t1 is 5 hours and the completion time for t2 is 
5 minutes.

 Since t1 will complete its execution after 5 hours, t2 has to wait for 5 hours 
to just finish 5 minutes job.

 In such scenarios where one thread is taking too much time to complete its 
execution, we need a way to prevent the execution of a thread in between if 
something important is pending.





Whenever a thread calls java.lang.Thread.yield method gives hint to the thread 
scheduler that it is ready to pause its execution. 

The thread scheduler is free to ignore this hint.

If any thread executes the yield method, the thread scheduler checks if there is 
any thread with the same or high priority as this thread. 

If the processor finds any thread with higher or same priority then it will move 
the current thread to Ready/Runnable state and give the processor to another 
thread and if not – the current thread will keep executing.



Once a thread has executed the yield method and there are many threads with 
the same priority is waiting for the processor, then we can’t specify which 
thread will get the execution chance first.

The thread which executes the yield method will enter in the Runnable state 
from Running state.

Once a thread pauses its execution, we can’t specify when it will get a chance 
again it depends on the thread scheduler.

The underlying platform must provide support for preemptive scheduling if 
we are using the yield method.



join():

If a Thread wants to wait until completing some other thread then we 
should go for join() method.

public final void join() throws InterruptedExcetion

public final void join(long ms) throws InterruptedException

public final void join(long ms, int ns) throws InterruptedException



public class Demo

{

public static void main(String[] args) throws InterruptedException

{

MyThread t1=new MyThread();

t1.setName("Sita");

t1.start();

t1.join();

MyThread t2=new MyThread();

t2.setName("Rama");

t2.start();

t2.join();

}

}

class MyThread extends Thread

{

@Override

public void run() {

for (int i=0;i<10;i++)

{

System.out.println(Thread.currentThread().getName()+" is executing..");

try {

Thread.sleep(1000);

} catch (InterruptedException e)

{

e.printStackTrace();

}

}

}

}

Output:
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Sita is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..
Rama is executing..



isAlive() :

used to check whether the thread is live or not. 
public Boolean isAlive();

currentThread():

This method is used to represent current thread class object.

public static thread currentThread();



isAlive() :

public class ThreadDemo

{

public static void main(String[] args) throws InterruptedException {

MyThread2 t=new MyThread2();

System.out.println("t1 Thread state:"+t.isAlive());

t.start();

System.out.println("t1 Thread state:"+t.isAlive());

Thread.sleep(20000);

System.out.println("t1 Thread state:"+t.isAlive());

}

}

class MyThread2 extends Thread

{

@Override

public void run() {

for (int i=0;i<10;i++)

{

System.out.println("Hello..");

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}



interrupted():

A thread can interrupt another sleeping or waiting thread.

For this Thread class defines interrupt() method.
public void interrupt();

Note:

The interrupt() is working good whenever our thread enters into waiting 
state or sleeping state.

The interrupted call will be wasted if our thread doesn’t enters into the 
waiting/sleeping state.



Synchronizing threads

Synchronized modifier is the modifier applicable only for methods 
and blocks but not for classes and variables.

If a method or a block declared as synchronized then at a time only 
one Thread is allowed to operate on the given object.

The main advantage of synchronized modifier is we can resolve data 
inconsistency problems.



But the main disadvantage of synchronized modifier is it increases the 
waiting time of the Thread and effects performance of the system.

Hence if there is no specific requirement it is never recommended to 
use.

The main purpose of this modifier is to reduce the data inconsistence 
problems.



Example:

public class SyncDemo
{

public static void main(String[] 
args) {

Whish w=new Whish();
Mt t1=new Mt("Purushotham",w);
Mt t2=new Mt("Naresh",w);
t1.start();
t2.start();

}
}
class Whish
{

public synchronized void 
whish(String name) throws 
InterruptedException {

for (int i=0;i<10;i++)
{

System.out.println("Good 
mrng.."+name);

Thread.sleep(2000);
}

}
}

class Mt extends Thread
{

Whish w;
String name;
Mt(String name,Whish w)
{

this.name=name;
this.w=w;

}

@Override
public void run() {

super.run();
try {

w.whish(name);
} catch (InterruptedException e) 

{
e.printStackTrace();

}
}

}



Inter Thread Communication

Two threads can communicate with each other by using 

wait(), 

notify(), 

notifyAll()

These methods are available in Object class but not in Thread class. 
Because threads are calling these methods on any object.

We should call these methods only from synchronized area other wise 
we will get runtime exception saying IllegalMonitorStateException.



Producer Consumer Problem

The producer-consumer problem is a classic example of a multi-process 
synchronization problem.

There are two processes, a producer and a consumer, that share a common 
buffer with a limited size. 

The producer “produces” data and stores it in the buffer, and the consumer 
“consumes” the data, removing it from the buffer.

Having two processes that run in parallel, we need to make sure that the 
producer will not put new data in the buffer when the buffer is full.

 Consumer won’t try to remove data from the buffer if the buffer is empty.





Producer Consumer Program:

import java.util.LinkedList;
public class ProducerConsumer
{

public static void main(String[] args) throws InterruptedException {
PC p=new PC();
Thread t1=new Thread(new Runnable() {

@Override
public void run() {

try {
p.produce();

} catch (InterruptedException e) {
e.printStackTrace();

}

}
});
Thread t2=new Thread(new Runnable() {

@Override
public void run() {

try {
p.consumer();

} catch (InterruptedException e) {
e.printStackTrace();

}
}

});
t1.start();
t2.start();
t1.join();
t2.join();

}



class PC
{

LinkedList<Integer> linkedList=new LinkedList<Integer>();
int capacity=1;

public synchronized   void produce() throws InterruptedException
{

int value=0;

while (true)
{

while (linkedList.size()==capacity)
{

wait();
}
System.out.println("Producer produced item-"+value);
linkedList.add(value++);
notify();
Thread.sleep(3000);

}
}
public synchronized void consumer() throws InterruptedException
{

while (true)
{

while (linkedList.size()==0) {
wait();

}
int val=linkedList.removeFirst();
System.out.println("Consumer consumed item-"+val);
notify();
Thread.sleep(3000);

}

}}



Daemon Threads

Daemon thread in Java is a low-priority thread that performs background 
operations such as garbage collection, finalizer, Action Listeners, Signal 
dispatches, etc.

Daemon thread in Java is also a service provider thread that helps the user 
thread.

 Its life is at the mercy of user threads i.e, when all user threads expire, 
JVM immediately terminates this thread.



Usually daemon thread are running with low priority but based on our 
requirement we can increase their priority also.

We can check whether the given thread is daemon or not by using the 
following thread class thread. 
public boolean isDaemon();

we can change the daemon nature of a thread by using setDaemon() method 
of thread class. 
public void setDaemon(Boolean b);

Note:

IllegalThreadStateException:
If you call the setDaemon() method after the thread has started, it will throw an 

exception.



Daemon thread example
class MyThread extends Thread

{

}

public class Daemon

{

public static void main(String[] args) 

{

MyThread t1=new MyThread();

System.out.println(t1.isDaemon());

t1.setDaemon(true);

System.out.println(t1.isDaemon());

}

}

Output:

fasle

true



JDBC
(Java Database Connectivity)



Storage areas or options



Storage areas or options

As the part of our Applications, we required to store our data like 
customers information, Billing Information, Calls Information etc..

To store this Data, we required Storage Areas. There are 2 types of 
Storage Areas.

Temporary Storage Areas

Permanent Storage Areas



Temporary Storage Areas:

These are the Memory Areas where Data will be stored temporarily.

Ex: All JVM Memory Areas (like Heap Area, Method Area, Stack Area etc).

Once JVM shutdown all these Memory Areas will be cleared automatically.



Permanent Storage Areas:

Also known as Persistent Storage Areas.

Here we can store Data permanently.

Ex: File Systems, Databases, Data warehouses, Big Data Technologies



File Systems:

File Systems can be stored unstructured data.

File Systems can be provided by Local operating System. 

File Systems are best suitable to store very less Amount of Information.



Limitations:

We cannot store huge amount of data.

There is no Query Language support and hence operations will become 
very complex.

There is no security for the data.

There is no mechanism to prevent duplicate data. Hence there may be a 
chance of data inconsistency problems.

To overcome the above problems of File Systems, we should 
recommended to use Databases.



Databases: 

We can store huge amount of data in the Databases.

Query language support is available for every Database and hence we can 
perform Database operations very easily.

To access data present in the Database, compulsory username and pwd must 
be required. Hence data is secured.

Inside Database data will be stored in the form of Tables. While developing 
database table schemas, Database admin follow various normalization 
techniques and can implement various constraints like unique key constrains, 
primary key constraints etc which prevent data duplication.

 Hence there is no chance of Data Inconsistency Problems.



Limitations of Databases:

Database cannot hold very huge amount of information like terabytes of 
Data. 

Database can provide support only for structured data (Tabular Data OR 
Relational Data) and cannot provide support for semi structured data 
(like XML Files) and Unstructured Data (like Video Files, Audio Files, 
Images etc) 

To overcome these problems we should go for more advanced storage 
areas like Big Data Technologies, Data warehouses etc.. 



JDBC

 JDBC is a Technology, which can be used to communicate with Database 
from Java Application.

JDBC is the Part of Java Standard Edition.

JDBC is a Specification defined by Java Vendor (Sun Micro Systems) and 
implemented by Database Vendors.

Database Vendor provided Implementation is called "Driver Software".



JDBC Features:

JDBC API is standard API. We can communicate with any Database 
without rewriting our Application i.e. it is Database independent API.

 JDBC Drivers are developed in Java and hence JDBC Concept is 
applicable for any Platform. i.e. JDBC is platform independent technology. 

By using JDBC API, we can perform basic CRUD operations very easily. 

We can also perform complex operations (like Inner Joins, Outer Joins, 
calling Stored Procedures etc) very easily by using JDBC API.

 JDBC API supported by large number of vendors and they developed 
multiple Products based on JDBC API.



JDBC Architecture



JDBC Architecture



JDBC Architecture

Application: It is a java applet or a servlet that communicates with a data 
source.

The JDBC API: The JDBC API allows Java programs to execute SQL 
statements and retrieve results. Some of the important classes and 
interfaces defined in JDBC API are as follows:

DriverManager: It plays an important role in the JDBC architecture. It 
uses some database-specific drivers to effectively connect enterprise 
applications to databases.

JDBC drivers: To communicate with a data source through JDBC, you 
need a JDBC driver that intelligently communicates with the respective 
data source.



DriverManager:

It is the Key Component in JDBC Architecture.

DriverManager is a Java Class present in java.sql package.

It is responsible to manage all Database drivers available in our system.

DriverManager is responsible to register and unregister Database Drivers.

DriverManager.registerDriver(Driver);

DriverManager.unregisterDriver(Driver);

DriverManager is responsible to establish connection to the Database with 
the help of Driver Software.

Connection con = DriverManager.getConnection (jdbcurl, username, pwd);



JDBC API



JDBC API provides several Classes and Interfaces.

Programmer can use these Classes and Interfaces to communicate 
with the Database.

Driver Software Vendor can use JDBC API while developing Driver 
Software.

JDBC API defines 2 Packages
java.sql Package: 

javax.sql Package: 



java.sql Package: 



javax.sql Package:



Types of drivers



While communicating with Database, we have to convert Java calls into 
Database specific calls and Database specific calls into Java calls. For this 
driver software is required. 

There are many drivers are available. But based on functionality all drivers 
are divided into 4 Types.

Type-1 Driver (JDBC-ODBC Bridge Driver OR Bridge Driver)

Type-2 Driver (Native API-Partly Java Driver OR Native Driver)

Type-3 Driver (All Java Net Protocol Driver OR Network Protocol Driver OR 
Middleware Driver)

Type-4 Driver (All Java Native Protocol Driver OR Pure Java Driver OR Thin 
Driver)





Type-1 Driver



Type-1 Driver:

Type-1 driver provided by Sun Micro Systems as the part of JDK. But 
this Support is available until 1.7 version only.

Internally this driver will take support of ODBC Driver to communicate 
with Database.

Type-1 Driver converts JDBC Calls (Java Calls) into ODBC Calls and 
ODBC Driver converts ODBC calls into Database specific Calls.

Hence Type-1 Driver acts as Bridge between JDBC and ODBC.



Advantages :

It is very easy to use and maintain.

We are not required to install any separate Software because it is 
available as the Part of JDK.

Type-1 Driver won't communicates directly with the Database. Hence 
it is Database Independent Driver. Because of this migrating from one 
Database to another Database will become very easy.



Limitations:

It is the slowest Driver among all JDBC Drivers (Snail Driver), because first 
it will convert JDBC Calls into ODBC Calls and ODBC Driver converts 
ODBC Calls into Database specific Calls.

This Driver internally depends on ODBC Driver, which will work only on 
Windows Machines. Hence Type-1 Driver is Platform Dependent Driver.

No Support from JDK 1.8 Version onwards.



Type-2 Driver

It is also known as Native API -partly Java Driver OR Native Driver.

Type-2 Driver is exactly same as Type-1 Driver except that ODBC Driver 
is replaced with vendor specific Native Libraries.

Type-2 Driver internally uses vendor specific native libraries to 
communicate with Database.

Native libraries means the set of Functions written in Non-Java (Mostly C 
OR C++).

We have to install Vendor provided Native Libraries on the Client Machine.

Type-2 Driver converts JDBC Calls into Vendor specific Native Library 
Calls, which can be understandable directly by Database Engine.



Advantages:

When compared with Type-1 Driver Performance is High, because it 
required only one Level Conversion from JDBC to Native Library 
Calls.

No need of arranging ODBC Drivers.

When compared with Type-1 Driver, Portability is more because 
Type-1 Driver is applicable only for Windows Machines. 



Limitations:

Internally this Driver using Database specific Native Libraries and hence 
it is Database Dependent Driver. Because of this migrating from one 
Database to another Database will become Difficult.

This Driver is Platform Dependent Driver.

On the Client Machine compulsory we should install Database specific 
Native Libraries.

There is no Guarantee for every Database Vendor will provide This 
Driver.

(Oracle is providing Type-2 Driver but MySql won’t providing this 
Driver)



Type-3 Driver:

Also known as All Java Net Protocol Driver OR Network Protocol 
Driver OR Middleware Driver.

Type-3 Driver converts JDBC Calls into Middleware Server specific 
Calls. Middleware Server can convert Middleware Server specific 
Calls into Database specific Calls. 

Internally Middleware Server may use Type-1, 2 OR 4 Drivers to 
communicates with Database.



Advantages:

This Driver won't communicate with Database directly and hence it is 
Database Independent Driver.

This Driver is Platform Independent Driver.

No need of ODBC Driver OR Vendor specific Native Libraries 



Limitations:

Because of having Middleware Server in the Middle, there may be a 
chance of Performance Problems.

We need to purchase Middleware Server and hence the cost of this Driver 
is more when compared with remaining Drivers.

Ex: IDS Driver (Internet Database Access Server)

Note: The only Driver which is both Platform Independent and Database 
Independent is Type-3 Driver. Hence it is recommended to use.



Type-4 Driver:

Also known as Pure Java Driver OR Thin Driver.



This Driver is developed to communicate with the Database directly 
without taking Support of ODBC Driver OR Vendor Specific Native 
Libraries OR Middleware Server. 

This Driver uses Database specific Native Protocols to communicate with 
the Database. 

This Driver converts JDBC Calls directly into Database specific Calls.

 This Driver developed only in Java and hence it is also known as Pure Java 
Driver. 

Because of this, Type-4 Driver is Platform Independent Driver. This Driver 
won't require any Native Libraries at Client side and hence it is light 
weighted. Because of this it is treated as Thin Driver.



Advantages

It won't require any Native Libraries, ODBC Driver OR Middleware 
Server

It is Platform Independent Driver

It uses Database Vendor specific Native Protocol and hence Security is 
more.

Limitations:

The only Limitation of this Driver is, it is Database Dependent Driver 
because it is communicating with the Database directly. 

Ex: Thin Driver for Oracle Connector/J Driver for MySQL



Collections



Limitations of array:

Array is indexed collection o fixed number of homogeneous data elements

Arrays can hold homogeneous data only

Once we created an array no chance of increasing o decreasing size of array

Ex:

Student[ ] s=new Student[100]; 

S[0]=new Student();

S[1]=new Student();

S[2]=new Customer(); compilation error

To overcome the above limitations of array the sun peoples are introduced collections 
concept



To overcome the  limitations in Array we should go for  collections concept.

 Collections are growable in nature that is based on our requirement we can 
increase (or) decrease the size  hence memory point of view collections 
concept is recommended to use.

Collections can hold both homogeneous and  heterogeneous objects. 

 Every collection class is implemented based on some standard data structure

Hence for every requirement ready-made method support is available being a 
programmer we can use these methods directly without writing the 
functionality on our own



Collections:

collection can hold both homogeneous data and heterogeneous data

collections are growable in nature

Memory wise collections are good. Recommended to use.

Performance wise collections are not recommended to use .





Introduction to Collections Framework

“The Collections Framework provides a well-designed set of interfaces and 
classes for storing and manipulating groups of data as a single unit, a 
collection.” -java.sun.com 

 The standard data structure in Java can be implemented in Java using some 
library classes and methods. These classes are present in java.util package. 

The collection framework is comprised of collection classes and collection 
interfaces. 

Collection is a group of objects which are designed to perform certain task. 
These tasks are associated with data structures.



The collection classes are the group of classes used to implement the 
collection interfaces. Various collection classes are…
LinkedList

ArrayList

AbstractSet

EnumSet

HashSet 

PriorityQueue

TreeSet

Vector

HashTable ..etc





Collection - interface

If we want to represent a group of "individual objects" as a single entity 
then we should go for collection.

In general we can consider collection as root interface of entire collection 
framework.

Collection interface defines the most common methods which can be 
applicable for any collection object.

There is no concrete class which implements Collection interface directly.



Collection Interface Methods
Method Description

add(Object) This method is used to add an object to the collection.

addAll(Collection c) This method adds all the elements in the given collection to this collection.

clear() This method removes all of the elements from this collection.

contains(Object o) This method returns true if the collection contains the specified element.

containsAll(Collection c) This method returns true if the collection contains all of the elements in the given collection.

equals(Object o) This method compares the specified object with this collection for equality.

hashCode() This method is used to return the hash code value for this collection.

isEmpty() This method returns true if this collection contains no elements.

iterator() This method returns an iterator over the elements in this collection.

max()
This method is used to return the maximum value present in the collection.

parallelStream() This method returns a parallel Stream with this collection as its source.

remove(Object o)
This method is used to remove the given object from the collection. If there are duplicate values, then this method 
removes the first occurrence of the object.

removeAll(Collection c) This method is used to remove all the objects mentioned in the given collection from the collection.

removeIf(Predicate filter) This method is used to remove all the elements of this collection that satisfy the given predicate.

retainAll(Collection c) This method is used to retain only the elements in this collection that are contained in the specified collection.

size() This method is used to return the number of elements in the collection.

spliterator() This method is used to create a Spliterator over the elements in this collection.

stream() This method is used to return a sequential Stream with this collection as its source.

toArray() This method is used to return an array containing all of the elements in this collection.

https://www.geeksforgeeks.org/collection-add-method-in-java-with-examples/
https://www.geeksforgeeks.org/collections-addall-method-in-java-with-examples/
https://www.geeksforgeeks.org/collection-clear-method-in-java-with-examples/
https://www.geeksforgeeks.org/collection-contains-method-in-java-with-examples/
https://www.geeksforgeeks.org/collection-isempty-method-in-java-with-examples/
https://www.geeksforgeeks.org/collections-max-method-in-java-with-examples/
https://www.geeksforgeeks.org/mathematic-logic-predicates-quantifiers/
https://www.geeksforgeeks.org/java-program-to-convert-iterator-to-spliterator/


List -interface

It is the child interface of Collection.

If we want to represent a group of individual objects as a single entity 
where "duplicates are allow and insertion order must be preserved" then 
we should go for List interface.

We can differentiate duplicate objects and we can maintain insertion 
order by means of index hence "index play very important role in List“

All list interface methods build based on index.



Methods in List interface

boolean add(int index,Object o);

boolean addAll(int index,Collectio c);

Object get(int index);

Object remove(int index);

Object set(int index,Object new);//to replace

Int indexOf(Object o);

Returns index of first occurrence of "o".

Int lastIndexOf(Object o);

ListIterator listIterator();



ArrayList



ArrayList

Introduced in 1.2 version.

ArrayList supports dynamic array that can be grow as needed.it can 
dynamically increase and decrease the size.

Duplicate objects are allowed.

Null insertion is possible.

Heterogeneous objects are allowed.

The under laying data structure is growable array.

Insertion order is preserved.



Constructors:

1) ArrayList a=new ArrayList();

Creates an empty ArrayList object with default initial capacity "10" if 
ArrayList reaches its max capacity then a new ArrayList object will be 
created with

New capacity=(current capacity*3/2)+1



2)ArrayList a=new ArrayList(int initialcapacity);

Creates an empty ArrayList object with the specified initial capacity



Vector



Vector

The underlying data structure is resizable array (or) growable array.

Duplicate objects are allowed.

Insertion order is preserved.

Heterogeneous objects are allowed.

Null insertion is possible.

Implements Serializable, Cloneable and RandomAccess interfaces.

Every method present in Vector is synchronized and hence Vector is 
Thread safe.



Vector specific methods:

To add objects:

add(Object o);-----Collection

add(int index,Object o);-----List

addElement(Object o);-----Vector



To remove elements:

remove(Object o);--------Collection

remove(int index);--------------List

removeElement(Object o);----Vector

removeElementAt(int index);-----Vector

removeAllElements();-----Vector

clear();-------Collection



To get objects:

Object get(int index);---------------List

Object elementAt(int index);-----Vector

Object firstElement();--------------Vector

Object lastElement();---------------Vector



Constructors: 

1) Vector v=new Vector();

Creates an empty Vector object with default initial capacity 10.

Once Vector reaches its maximum capacity then a new Vector object 
will be created with double capacity.

 That is "newcapacity=currentcapacity*2"



2) Vector v=new Vector(int initialcapacity);

3) Vector v=new Vector(int initialcapacity, int incrementalcapacity);

4) Vector v=new Vector(Collection c);



Stack



Stack

It is the child class of Vector. 

Whenever last in first out(LIFO) order required then we should go for 
Stack.



Constructor: 

It contains only one constructor. 

Stack s= new Stack();



Methods:

Object push(Object o)

To insert an object into the stack.

Object pop()

To remove and return top of the stack.

Object peek()

To return top of the stack without removal.

boolean empty()

Returns true if Stack is empty.



import java.util.Stack;

public class StackDemo

{

public static void main(String[] args) {

Stack s=new Stack();

System.out.println("Elements in stack :"+s);

s.push("A");

s.push("B");

s.push("C");

s.push("D");

s.push("E");

System.out.println("Elements in stack :"+s);

s.pop();

System.out.println("Elements in stack :"+s);

System.out.println("Top element in stack :"+s.peek());

System.out.println("Search A element in stack :"+s.search("A"));

System.out.println("Search F element in stack :"+s.search("F"));

System.out.println("Search A element in stack :"+s);

}

}

Output:
Elements in stack :[]

Elements in stack :[A, B, C, D, E]

Elements in stack :[A, B, C, D]

Top element in stack :D

Search A element in stack :4

Search F element in stack :-1

Search A element in stack :[A, B, C, D]



import java.util.Scanner;

import java.util.Stack;

public class Ex5

{

public static void main(String[] args) {

Stack<Integer> st=new Stack<Integer>();

int choice=0;

int position;

Scanner scr=new Scanner(System.in);

while(true)    {

System.out.println("Stack Operations");

System.out.println("1.Push an element");

System.out.println("2.Display stack");

System.out.println("3.Pop an element");

System.out.println("4.Search an element");

System.out.println("Enter your choice");

choice=scr.nextInt();

switch(choice)  {

case 1:

System.out.println("Enter an element");

Integer i=scr.nextInt();

st.push(i);

break;

case 2:

System.out.println("Elements in stack :"+st);

break;

case 3:

System.out.println("Top element popped..");

Integer obj = st.pop();

System.out.println("Popped element= "+obj);

break;

case 4:

System.out.println("Which an element ? ");

Integer ele=scr.nextInt();

position = st.search(ele);

if(position==-1)

System.out.println("Element not found");

else

System.out.println("Position of the element is:= "+position);

break;

default:

return;    }   }    }

}

Output:
Stack Operations
1.Push an element
2.Display stack
3.Pop an element
4.Search an element
Enter your choice
1
Enter an element
10
Stack Operations
1.Push an element
2.Display stack
3.Pop an element
4.Search an element
Enter your choice
1
Enter an element
20
Stack Operations
1.Push an element
2.Display stack
3.Pop an element
4.Search an element
Enter your choice
2
Elements in stack :[10, 20]
Stack Operations
1.Push an element
2.Display stack
3.Pop an element
4.Search an element
Enter your choice



LinkedList:

The underlying data structure is double LinkedList.

If our frequent operation is insertion (or) deletion in the middle then 
LinkedList is the best choice.

If our frequent operation is retrieval operation then LinkedList is 
worst choice.

Duplicate objects are allowed.

Insertion order is preserved.

Heterogeneous objects are allowed.

Null insertion is possible.



Methods in LinkedList

void addFirst(Object o);

void addLast(Object o); 

Object getFirst(); 

Object getLast(); 

Object removeFirst();

Object removeLast();



Constructors: 

LinkedList l=new LinkedList();

Creates an empty LinkedList object.

LinkedList l=new LinkedList(Collection c); 

To create an equivalent LinkedList object for the given collection. 



Cursors



The 3 cursors of java:

If we want to get objects one by one from the collection then we should 
go for cursor. 

There are 3 types of cursors available in java. They are:

1.Enumeration

2.Iterator

3.ListIterator



Enumeration:

We can use Enumeration to get objects one by one from the legacy 
collection objects.

We can create Enumeration object by using elements() method.

public Enumeration elements();

Enumeration e=v.elements();



Enumeration interface defines the following two methods

public boolean hasMoreElements();

public Object nextElement();



Example:

import java.util.*;

class  EnumerationDemo

{

public static void main(String[] args)

{

Vector v=new Vector();

for(int i=0;i<=10;i++)

{

v.addElement(i);

}

System.out.println(v);//[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Enumeration e=v.elements();

while(e.hasMoreElements())

{

Integer i=(Integer)e.nextElement();

if(i%2==0)

System.out.println(i);//0 2 4 6 8 10

}

}

}



Limitations of Enumeration:

We can apply Enumeration concept only for legacy classes and it is 
not a universal cursor.

By using Enumeration we can get only read access and we can't 
perform remove operations.

To overcome these limitations they introduced Iterator concept in 
1.2v.



Iterator:

We can use Iterator to get objects one by one from any collection 
object.

We can apply Iterator concept for any collection object and it is a 
universal cursor.

While iterating the objects by Iterator we can perform both read and 
remove operations.

We can get Iterator object by using iterator() method of Collection 
interface.

public Iterator iterator();
Ex: Iterator itr=c.iterator();



Iterator interface defines the following 3 methods.

public boolean hasNext();

public object next();

public void remove();



Ex:

import java.util.ArrayList;

import java.util.Iterator;

public class IteratorEx

{

public static void main(String[] args) {

ArrayList al=new ArrayList();

for (int i=0;i<100;i++)

{

al.add(i);

}

System.out.println("ArrayList Elements:"+al);

Iterator i=al.iterator();

while (i.hasNext())

{

int n=(int)i.next();

if(n%2!=0)

i.remove();

}

System.out.println("Even ArrayList

Elements:"+al);

}

}

Output:
ArrayList Elements:[0, 1, 2, 3, 4, 5, 6, 7, 8, .. 99]
Even ArrayList Elements:[0, 2, 4, 6, 8, 10,   ..98]



Limitations of Iterator:

Both enumeration and Iterator are single direction cursors only. That is 
we can always move only forward direction and we can't move to the 
backward direction.

While iterating by Iterator we can perform only read and remove 
operations and we can't perform replacement and addition of new 
objects.

To overcome these limitations sun people introduced listIterator concept



Enumeration Iterator

Introduced in Java 1.0 Introduced in Java 1.2

Legacy Interface Not Legacy Interface

It is used to iterate only Legacy Collection classes. We can use it for any Collection class.

It supports only READ operation. It supports both READ and DELETE operations.

It’s not Universal Cursor. It is a Universal Cursor.

Lengthy Method names. Simple and easy-to-use method names.



ListIterator:

ListIterator is the child interface of Iterator.

By using listIterator we can move either to the forward direction (or) to 
the backward direction that is it is a bi-directional cursor.

While iterating by listIterator we can perform replacement and addition 
of new objects in addition to read and remove operations



By using listIterator method we can create listIterator object.

public ListIterator listIterator();

ListIterator itr=l.listIterator();



ListIterator interface defines the following 9 methods.

public boolean hasNext();

public Object next(); forward

public int nextIndex();

public boolean hasPrevious();

public Object previous(); backward

public int previousIndex();

public void remove();

public void set(Object new);

public void add(Object new);



Ex:

import java.util.LinkedList;

import java.util.ListIterator;

public class MyLinkedList

{

public static void main(String[] args)

{

LinkedList<String> ll=new LinkedList<String>();

ll.add("A");

ll.add("B");

ll.add("C");

ll.add("D");

ll.add("E");

ListIterator li=ll.listIterator();

System.out.println("LinkedList elements in forward direction..");

while (li.hasNext())

{

System.out.println(li.next());

}

System.out.println("LinkedList elements in backward direction..");

while (li.hasPrevious())

{

System.out.println(li.previous());

}

}

}

Output:
LinkedList elements in forward direction..
A
B
C
D
E
LinkedList elements in backward direction..
E
D
C
B
A



Comparison of Enumeration Iterator and ListIterator ?

Property Enumeration Iterator ListIterator

1) Is it legacy ? Yes no no

2) It is applicable for ? Only legacy classes.
Applicable for any 

collection object.

Applicable for only list 

objects.

3) Moment?
Single direction 

cursor(forward)

Single direction 

cursor(forward)
Bi-directional.

4) How to get it?
By using elements() 

method.

By using 

iterator()method.

By using listIterator() 

method.

5) Accessibility? Only read. Both read and remove.
Read/remove/replace/a

dd.

6) Methods
hasMoreElement()

nextElement()

hasNext()

next()

remove()

9 methods.



Generic classes



Generic Class

JDK 1.5 introduces several extensions to the Java programming 
language. One of these is the introduction of generics.

Using generics it is possible to create a single class that automatically 
works with different types of data.

A Generic class simply means that the items or functions in that class 
can be generalized with the parameter(example T) to specify that we 
can add any type as a parameter in place of T like Integer, Character, 
String, Double or any other user-defined type.



Generics

Advantage of Java Generics:

There are mainly 3 advantages of generics. They are as follows

1) Type-safety: 

We can hold only a single type of objects in generics. It doesn’t allow to 
store other objects.

Ex: List list = new ArrayList();

list.add(10);

list.add("10");

With Generics, it is required to specify the type of object we need to store.

List<Integer> list = new ArrayList<Integer>();

list.add(10);

list.add("10");// compile-time error



2) Type casting is not required: There is no need to typecast the object.

Ex:

List list = new ArrayList();    

list.add("hello");    

String s = (String) list.get(0);//typecasting    

After Generics, we don't need to typecast the object.  

List<String> list = new ArrayList<String>();    

list.add("hello");    

String s = list.get(0);



3) Compile-Time Checking:

It will check the type at compile time so problem will not occur at runtime.

The good programming strategy says it is far better to handle the problem 
at compile time than runtime.

Example:

List<String> list = new ArrayList<String>();    

list.add("hello");    

list.add(32);//Compile Time Error



Example:

import java.util.ArrayList;

import java.util.Collections;

public class SortNames

{

public static void main(String[] args)

{

ArrayList<String> al=new ArrayList<String>();

al.add("Bhaanu");

al.add("Chandhu");

al.add("Divya");

al.add("Abhi");

al.add("Eesha");

System.out.println("Before sorting");

System.out.println("---------------------");

for (String name:al)

System.out.println(name);

Collections.sort(al);

System.out.println("Before sorting");

System.out.println("---------------------");

for (String name:al)

System.out.println(name);

}

}



User defined Generic class
Example:

public class Ex1

{

public static void main(String[] args)

{

MyClass<String> m1=new MyClass<String>("100");

System.out.println("Generic class is returning :"+m1.getInfo());

MyClass<Double> m2=new MyClass<Double>(10.25);

System.out.println("Generic class is returning :"+m2.getInfo().getClass());

}

}

class MyClass<T>

{

T t;

MyClass(T t)

{

this.t=t;

}

public T getInfo()

{

return t;

}

}



Example:

public class Ex2

{

public static void main(String[] args)

{

Show<Float> s=new Show<Float>(10.5f);

System.out.println(s.getInfo());

Show<Integer> s1=new Show<Integer>(10);

System.out.println(s1.getInfo());

}

}

class Show<T extends Number>

{

T t;

Show(T t)

{

this.t=t;

}

public T getInfo()

{

return t;

}

}



Random class



Random class in Java?

In Java, Random class is a part of java.util package. 

The generation of random numbers takes place by using an instance of 
the Java Random Class. 

This class provides different methods in order to produce random 
numbers of type boolean, integer, double, long, float, etc.



Constructors used in a Java Random class

This class contains two constructors that are mentioned below:

Random(): this constructor helps in creating a new random generator

Random(long seed): this constructor helps in creating a new random 
generator using specified seed



Method Functionality

nextDouble()
Returns the next pseudo-random number that is a double value between the range of 0.0 to 

1.0.

nextBoolean()
Returns the next pseudo-random which is a Boolean value from random number generator 

sequence

nextFloat() Returns the next pseudo-random which is a float value between 0.0 to 1.0

nextInt()
Returns the next pseudo-random which is an integer value from random number generator 

sequence

nextInt(Int n)
Returns the next pseudo-random which is an integer value between 0 and the specified 

value from random number generator sequence

nextBytes(byte[] bytes) Generates random bytes and places them into a byte array supplied by the user

Longs() Returns an unlimited stream of pseudorandom long values

nextGaussian()
Helps in returning the next pseudo-random, Gaussian (precisely) distributed double value 

with mean 0.0 and standard deviation 1.0 from this random number generator’s sequence

Methods



Example:

import java.util.Random;

public class RandomDemo

{

public static void main(String[] args) {

Random rnd=new Random();

System.out.println("Random boolean :"+rnd.nextBoolean());

byte b[]=new byte[10];

rnd.nextBytes(b);

System.out.print("Random bytes   : ");

for (byte n:b)

{

System.out.print(n+" ");

}

}

}

Output:

Random boolean :false

Random bytes   : -36 74 119 70 -65 117 -58 127 121 -5



StringTokenizer



StringTokenizer

The string tokenizer class allows an application to break a string into tokens. 

The tokenization method is much simpler than the one used by the 
StreamTokenizer class

The set of delimiters (the characters that separate tokens) may be specified 
either at creation time or on a per-token basis.

An instance of StringTokenizer behaves in one of two ways, depending on 
whether it was created with the returnDelims flag having the value true or 
false:



StringTokenizer methods

int countTokens()Calculates the number of times that this tokenizer's nextToken method can be 

called before it generates an exception.

boolean hasMoreElements()Returns the same value as the hasMoreTokens method.

boolean hasMoreTokens()Tests if there are more tokens available from this tokenizer's string.

Object nextElement()Returns the same value as the nextToken method, except that its declared return 

value is Object rather than String.

String nextToken()Returns the next token from this string tokenizer.

String nextToken(String delim)Returns the next token in this string tokenizer's string.

https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.htmlcountTokens()
https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.htmlhasMoreElements()
https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.htmlhasMoreTokens()
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.htmlnextElement()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.htmlnextToken()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/StringTokenizer.htmlnextToken(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


Example:

StringTokenizer st = new StringTokenizer("this is a test");

while (st.hasMoreTokens()) 

{

System.out.println(st.nextToken());

}

prints the following output:

this

is

a

test



StringTokenizer is a legacy class that is retained for compatibility reasons although its use 
is discouraged in new code.

 It is recommended that anyone seeking this functionality use the split method of String or 
the java.util.regex package instead.

The following example illustrates how the String.split() can be used to break up a string 
into its basic tokens:

Example:

String[] result = "this is a test".split("\\s");

for (int x=0; x<result.length; x++)

System.out.println(result[x]);
Output:

this
is
a
test



Scanner Class



Scanner class

Scanner is a class in java.util package used for obtaining the input of the 
primitive types like int, double, etc. and strings. 

It is the easiest way to read input in a Java program, though not very efficient 
if you want an input method for scenarios where time is a constraint. 

To create an object of Scanner class, we usually pass the predefined object 
System.in, which represents the standard input stream. We may pass an object 
of class File if we want to read input from a file.

To read entire line of Strings we can use nextLine().

To read a single character, we use next().charAt(0). next() function returns 
the next token/word in the input as a string and charAt(0) function returns the 
first character in that string.



Methods

boolean hasNext( ) boolean hasNext(Pattern pattern)

boolean hasNext(String pattern) boolean hasNextBigDecimal( )

boolean hasNextBigInteger( ) boolean hasNextBigInteger(int radix)

boolean hasNextBoolean( ) boolean hasNextByte( )

boolean hasNextByte(int radix) boolean hasNextDouble( )

boolean hasNextFloat( ) boolean hasNextInt( )

boolean hasNextInt(int radix) boolean hasNextLine( )

boolean hasNextLong( ) boolean hasNextLong(int radix)

boolean hasNextShort( ) boolean hasNextShort(int radix)

String next( ) String next(String pattern)

boolean nextBoolean( ) byte nextByte( )

double nextDouble( ) int nextInt( )

String nextLine( ) long nextLong()

short nextShort( )



Calendar class



Calendar class

Calendar class in Java is an abstract class that provides methods for converting date 
between a specific instant in time and a set of calendar fields such as MONTH, 
YEAR, HOUR, etc. 

It inherits Object class and implements the Comparable, Serializable, Cloneable 
interfaces.

As it is an Abstract class, so we cannot use a constructor to create an instance. 
Instead, we will have to use the static method Calendar.getInstance() to instantiate 
and implement a sub-class.. 

java.util.Calendar is an abstract base class for extracting detailed information such 
as year, month, date, hour, minute and second from a Date object. 

Subclasses of Calendar can implement specific calendar systems such as Gregorian 
calendar, Lunar Calendar and Jewish calendar.

 Currently, java.util.GregorianCalendar for the Gregorian calendar is supported in 
the Java API.



Methods

Calendar provides no public constructors.

static Calendar getInstance( ) : Returns a Calendar object for the default 
locale and time zone. 

int get(int calendarField) : Returns the value of one component of the 
invoking object. 

The component is indicated by calendarField. 

Examples of the components that can be requested are Calendar.YEAR, 
Calendar.MONTH, Calendar.MINUTE, and so forth. 



final Date getTime( ) : Returns a Date object equivalent to the time of the 
invoking object. 

final void set(int year, int month, int dayOfMonth) : Sets various date 
and time components of the invoking object.

final void setTime(Date d) : Sets various date and time components of the 
invoking object. This information is obtained from the Date object d. 



METHOD DESCRIPTION

abstract void add(int field, int 

amount)

It is used to add or subtract the specified amount of time to the given 

calendar field, based on the calendar’s rules.

int get(int field) It is used to return the value of the given calendar field.

abstract int getMaximum(int 

field)

It is used to return the maximum value for the given calendar field of this 

Calendar instance.

abstract int getMinimum(int 

field)

It is used to return the minimum value for the given calendar field of this 

Calendar instance.

Date getTime() It is used to return a Date object representing this Calendar’s time value.</td



Example:

import java.util.*;

public class Calendar1 {

public static void main(String args[])

{

Calendar c = Calendar.getInstance();

System.out.println("The Current Date is:" + c.getTime());

}

}

Output:

The Current Date is:Tue Aug 28 11:10:40 UTC 2022

The Current Date is:Tue Aug 28 11:10:40 UTC 2018



Example:

import java.util.*;

public class Calendar3 {

public static void main(String[] args)

{

// creating calendar object

Calendar calendar = Calendar.getInstance();

int max = calendar.getMaximum(Calendar.DAY_OF_WEEK);

System.out.println("Maximum number of days in a week: " + max);

max = calendar.getMaximum(Calendar.WEEK_OF_YEAR);

System.out.println("Maximum number of weeks in a year: " + max);

}

}

Output:

Maximum number of days in a week: 7

Maximum number of weeks in a year: 53



Example:

import java.util.Calendar;

public class Ex20

{

public static void main(String[] args)

{

String[] 

month={"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};

Calendar calendar=Calendar.getInstance();

System.out.println("Calendar Type:"+calendar.getCalendarType());

System.out.println("Time Zone :"+calendar.getTimeZone().getID());

System.out.print("Date:");

System.out.print(month[calendar.get(Calendar.MONTH)]);

System.out.print(" "+calendar.get(Calendar.DAY_OF_MONTH));

System.out.print(" "+calendar.get(Calendar.YEAR));

}

}

Output:

Calendar Type:gregory

Time Zone :Asia/Calcutta

Date:Jun 16 2022



MAP



Map properties

If we want to represent a group of objects as "key-value" pair then we 
should use Map interface.

Both key and value are objects only.

Duplicate keys are not allowed but values can be duplicated

Each key-value pair is called "one entry".

Map interface is not child interface of Collection and hence we can't 
apply Collection interface methods here.

Map interface defines the following specific methods.





HashMap:



HashMap:

The underlying data structure is Hashtable.

Duplicate keys are not allowed but values can be duplicated.

Insertion order is not preserved and it is based on hash code of the keys.

Heterogeneous objects are allowed for both key and value.

Null is allowed for keys(only once) and for values(any number of times).

It is best suitable for Search operations.


