

0
0
1

11
0
1
0

J K
0 X
1 X
X
X

1
0

1
1

(COMPUTER INSTRUCTIONS):

1/0

CHAPTER E L E V E N

Input-Output
Organization

lN THIS CHAPTER

11-1 Peripheral Devices
11·2 Input-Output lnterfa.:�
11• 3 Asynchronous Data T ransfcr
11-4 Modes ofTrarufer
11·5 Priority Interrupt
11-6 Di=< Memory Access
11-7 lnpu<-Output Ptoeessor
11-8 Serial Communicarion

11·1 Peripheral Devices
The input-output subsystem of a computer, referred to as 110, provides an
effldent mode of communication between the central system and the outside
environment. Programs and data must be entered into computer memory for
processing and results obtained from computations must be recorded M dis
played for the user. A computer serves no useful purpose without the ability
to receive information from an outside souroe and to transltUt results in a
meaningful form.

The most familiar means of entering Wonnation into a computer is
through a typewrite"' like keyboard that aUows a person to enter alphanumeric
Wormation directly. Every time a key is depressed, the terminal sends a binary
coded character to the computer. The fastest possible speed for entering
Information this way depends on the person's typing speed. On the other
hand, the central processing unit is an extremely fast device capable of per
fornU.ng operations at very high speed. When input information is transferred
to the processor via a slow lceyboard, the processor will be idle most of the time
while waiting for the Wormation to arrive. To use a computer efficiently, a

381

382 CHAI'TER ELEVEN Input-Output Organization

peripheral

monitor and
Jay board

printer

large amount of programs and data must be prepared in advance and transmit
ted into a storage medium such as magnetic tapes or disks. The information
in the disk is then transferred into computer memory at a rapid rate. Results
of programs are also transferred into a high-speed storage, such as disks, from
which they can be transferred later into a printer to provide a printed output
of results.

Devices that are under the direct control of the computer are said to be
connected on-line. These devices are designed to read information into or out
of the memory unit upon command from the CPU and are considered to be
part of the total computer system. Input or output devices attached to the
computer are also called peripherals . Among the most common peripherals are
keyboards, display units, and printers. Peripherals that provide auxiliary stor
age for the system are magnetic disks and tapes. Peripherals are electrome
chanical and electromagnetic devices of some complexity. Only a very brief
discussion of their function will be given here without going into detail of their
internal construction.

Video monitors are the most commonly used peripherals. They consist
of a keyboard as the input device and a display unit as the output device. There
are different types of video monitors, but the most popular use a cathode ray
tube (CRT). The CRT contains an electronic gun that sends an electronic beam
to a phosphorescent screen in front of the tube. The beam can be deflected
horizontally and vertically. To produce a pattern on the screen, a grid inside
the CRT receives a variable voltage that causes the beam to hit the screen and
make it glow at selected spots. Horizontal and vertical signals deflect the beam
and make it sweep across the tube, causing the visual pattern to appear on the
screen. A characteristic feature of display devices is a cursor that marks the
position in the screen where the next character will be inserted. The cursor can
be moved to any position in the screen, to a single character, the beginning of
a word, or to any line. Edit keys add or delete information based on the cursor
position. The display terminal can operate in a single-character mode where
all characters entered on the screen through the keyboard are transmitted to
the computer simultaneously. In the block mode, the edited text is first stored
in a local memory inside the terminal. The text is transferred to the computer
as a block of data.

Printers provide a permanent record on paper of computer output data
or text. There are three basic types of character printers: daisywheel, dot
matrix, and laser printers. The daisywheel printer contains a wheel with the
characters placed along the circumference. To print a character, the wheel
rotates to the proper position and an energized magnet then presses the letter
against the ribbon. The dot matrix printer contains a set of dots along the
printing mechanism. For example, a 5 x 7 dot matrix printer that prints 80
characters per line has seven horizontal lines, each consisting of 5 x 80 = 400
dots. Each dot can be printed or not, depending on the specific characters that
are printed on the line. The laser printer uses a rotating photographic drum

magnetic tape

magnetic disk

ASCII

SECTION 1 1 · 1 Peripheral Devices 383

that is used to imprint the character images. The pattern is then transferred
onto paper in the same manner as a copying machine.

Magnetic tapes are used mostly for storing files of data: for example, a
company's payroll record. Access is sequential and consists of records that can
be accessed one after another as the tape moves along a stationary read-write
mechanism. It is one of the cheapest and slowest methods for storage and has
the advantage that tapes can be removed when not in use. Magnetic disks have
high-speed rotational surfaces coated with magnetic material. Access is
achieved by moving a read-write mechanism to a track in the magnetized
surface. Disks are used mostly for bulk storage of programs and data. Tapes
and disks are discussed further in Sec. 12-1 in conjunction with their role as
auxiliary memory.

Other input and output devices encountered in computer systems are
digital incremental plotters, optical and magnetic character readers, analog-to
digital converters, and various data acquisition equipment. Not all input comes
from people, and not all output is intended for people. Computers are used
to control various processes in real time, such as machine tooling, assembly
line procedures, and chemical and industrial processes. For such applications,
a method must be provided for sensing status conditions in the process and
sending control signals to the process being controlled.

The input-output organization of a computer is a function of the size of
the computer and the devices connected to it. The difference between a small
and a large system is mostly dependent on the amount of hardware the
computer has available for communicating with peripheral units and the num
ber of peripherals connected to the system. Since each peripheral behaves
differently from any other, it would be prohibitive to dwell on the detailed
interconnections needed between the computer and each peripheral. Certain
techniques common to most peripherals are presented in this chapter.

ASCII Alphanumeric Characters
Input and output devices that communicate with people and the computer are
usually involved in the transfer of alphanumeric information to and from the
device and the computer. The standard binary code for the alphanumeric
characters is ASCII (American Standard Code for Information Interchange). It
uses seven bits to code 128 characters as shown in Table 11-1 . The seven bits
of the code are designated by b1 through b7, with b, being the most significant
bit. The letter A, for example, is represented in ASCII as 1000001 (column 100,
row 0001). The ASCII code contains 94 characters that can be printed and 34
nonprinting characters used for various control functions. The printing char
acters consist of the 26 uppercase letters A through Z, the 26 lowercase letters,
the 10 numerals 0 through 9, and 32 special printable characters such as %, * ,
and $.

The 34 control characters are designated in the ASCII table with abbrevi-

384 CHAPTER ElEVEN Input-Output Organization

TABLE 1 1·1 American Standard Code for Information Interchange (ASCII)

b7 b6 bs

b4 b3 b2 bt 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ p p
0001 SOH DC! I A Q a q
0010 STX DC2 2 B R b
0011 ETX DC3 # 3 c s c
0100 EOT DC4 $ 4 D T d
0101 ENQ NAK % 5 E u e u
0110 ACK SYN & 6 F v v
0111 BEL ETB 7 G w g w
1000 BS CAN 8 H X h X
1001 HT EM 9 I y y
1010 LF SUB J z j
1011 VT ESC + K [k
1100 FF FS < L \ I
1101 CR GS M 1 m
1110 so RS > N 1\ n
1111 SI us 0 0 DEL

Control characters

NUL Null DLE Data link escape
SOH Start of heading DC! Device control I
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
so Shift out RS Record separator
SI Shift in us Unit separator
SP Space DEL Delete

ated names. They are listed again below the table with their functional names.
The control characters are used for routing data and arranging the printed text
into a prescribed format. There are three types of control characters: format
effectors, information separators, and communication control characters. For-
mat effectors are characters that control the layout of printing. They include

byte

interface

SECTION I I ·Z Input-Output Interface 385

the familiar typewriter controls, such as backspace (BS), horizontal tabulation
(Hf), and carriage return (CR). Information separators are used to separate the
data into divisions like paragraphs and pages. They include characters such as
record separator (RS) and file separator (FS). The communication control char
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are STX (start of text) and ETX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
as a single unit called a llyte . Therefore, ASCII characters most often are stored
one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII characters
with the most significant bit set to 0. Additional 128 8-bit characters with the
most significant bit set to 1 are used for other symbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

1 1-2 Input-Output Interface

Input-output interface provides a method for transferring information be
tween internal storage and external I/0 devices. Peripherals connected to a
computer need special communication links for interfacing them with the
central processing unit. The purpose of the communication link is to resolve
the differences that exist between the central computer and each peripheral.
The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory, which are electronic devices. Therefore, a conversion of signal
values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechariism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize
all input and output transfers. These components are called int� units
because they interface between the processor bus and the peripheral device.

386 CHAPTER EL£VEN Input-OutpUt Orianizadon

In addition, each device may have its own controUer that supervises the
operations of the particular mechanism in the peripheral.

l/0 Bus and Interface Modules
A typical communication link between the processor and several peripherals
is shown in Fig. 11·1. The 1/0 bus consists of data lines, address lines, and
control lines. The magnetic disk, printer, and terminal are employed in prac
tically any general-purpose computer. The magnetic tape is used in some
computers for backup storage. Each peripheral devi.ce has associated with it
an interface unit. Each interface deoodes the address and control received from
the UO bus, interprets them for the peripheral, and provides signals for the
periphe.ral controUer. It also synchronizes the data flow and supervises the
transfer between peripheral and processor. Each peripheral has its own con·
troUer that operates the particular electromechanical device. fur example, the
printer controUer controls the paper motion, the print timing, and the selection
of printing characters. A controUer may be housed separately or may be
physically integrated with the peripheral.

The UO bus from the processor is attached to aU peripheral interfaces. To
communicate with a particular device, the processor places a device address
on the address lines. Each interface attached to the 1/0 bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in
the bus are disabled by their interface.

At the same time that the address is made avallable In the address lines,
the processor provides a function code in the control lines. The interface

Fleur• 11·1 Conntaion ri 110 buo to input-ou<put devlca.

�----��-------r--w���--�-------;--- nu
� r----r-r----�-t----��------�t-- �

L_jh-rr-rt-t�rtt---rrr--Corool

I/0 command

control command

status

output data

input data

SECTION 1 1 -2 Input-Output Interface 387

selected responds to the function code and proceeds to execute it. The function
code is referred to as an VO command and is in essence an instruction that is
executed in the interface and its attached peripheral unit. The interpretation
of the command depends on the peripheral that the processor is addressing.
There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it what
to do. For example, a magnetic tape unit may be instructed to backspace the
tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status
of the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig
nated by setting bits in a status register that the processor can read at certain
intervals.

A data output command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit.
The computer starts the tape moving by issuing a control command. The
processor then monitors the status of the tape by means of a status command.
When the tape is in the correct position, the processor issues a data output
command. The interface responds to the address and command and transfers
the information from the data lines in the bus to its buffer register. The interface
then communicates with the tape controller and sends the data to be stored
on tape.

The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

UO versus Memory Bus
In addition to communicating with VO, the processor must communicate with
the memory unit. Like the VO bus, the memory bus contains data, address,
and read/write control lines. There are three ways that computer buses can be
used to communicate with memory and VO:

1. Use two separate buses, one for memory and the other for VO.

2. Use one common bus for both memory and VO but have separate
control lines for each.

3. Use one common bus for memory and VO with common control lines.

388 CHAPTER ELEVEN Input-Output Organization

In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for 110. This is done

lOP in computers that provide a separate 110 processor (lOP) in addition to the
central processing unit (CPU). The memory communicates with both the CPU
and the lOP through a memory bus. The lOP communicates also with the input
and output devices through a separate 110 bus with its own address, data and
control lines. The purpose of the lOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.
The 110 processor is sometimes called a data channel. In Sec. 11-7 we discuss
the function of the lOP in more detail.

isolated 110

mnnory-mapped

Isolated versus Memory-Mapped 1/0
Many computers use one common bus to transfer information between mem
ory or 110 and the CPU. The distinction between a memory transfer and 110
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The 110
read and 1/0 write control lines are enabled during an 110 transfer. The memory
read and memory write control lines are enabled during a memory transfer. This
configuration isolates all 110 interface addresses from the addresses assigned
to memory and is referred to as the isolated 110 method for assigning addresses
in a common bus.

In the isolated 110 configuration, the CPU has distinct input and output
instructions, and each of these instructions is associated with the address of
an interface register. When the CPU fetches and decodes the operation code
of an input or output instruction, it places the address associated with the
instruction into the common address lines. At the same time, it enables the 110
read (for input) or 110 write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external compo
nents that the address is for a memory word and not for an 110 interface.

The isolated 110 method isolates memory and 110 addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to use the same address
space for both memory and 110. This is the case in computers that employ only
one set of read and write signals and do not distinguish between memory and
110 addresses. This configuration is referred to as memory-mapped 110 . The
computer treats an interface register as being part of the memory system. The
assigned addresses for interface registers cannot be used for memory words,
which reduces the memory address range available.

110 port

SECTION 1 1 -1 Input-Output Interface 389

In a memory-mapped l/0 organization there are no specific input or
output instructions. The CPU can manipulate l/0 data residing in interface
registers with the same instructions that are used to manipulate memory
words. Each interface is organized as a set of registers that respond to read and
write requests in the normal address space. Typically, a segment of the total
address space is reserved for interface registers, but in general, they can be
located at any address as long as there is not also a memory word that responds
to the same address.

Computers with memory-mapped l/0 can use memory-type instructions
to access l/0 data. It allows the computer to use the same instructions for either
input-output transfers or for memory transfers. The advantage is that the load
and store instructions used for reading and writing from memory can be used
to input and output data from l/0 registers. In a typical computer, there are
more memory-reference instructions than l/0 instructions. With memory
mapped l/0 all instructions that refer to memory are also available for l/0.

Example of UO Interface
An example of an l/0 interface unit is shown in block diagram form in Fig. 11-2.
It consists of two data registers called ports, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with
the CPU through the data bus. The chip select and register select inputs
determine the address assigned to the interface. The l/0 read and write are two
control lines that specify an input or output, respectively. The four registers
communicate directly with the l/0 device attached to the interface.

The l/0 data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface
is connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the l/0 device by sending a word to the appropriate
interface register. In a system like this, the function code in the l/0 bus is not
needed because control is sent to the control register, status information is
received from the status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information
is always via the common data bus. The distinction between data, control, or
status information is determined from the particular interface register with
which the CPU communicates.

The control register receives control information from the CPU. By load
ing appropriate bits into the control register, the interface and the l/0 device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may be instructed to rewind the tape or to start the tape moving in

390 CHAPTER ELEVEN Input-Output Organization

Bidirectional

data bus

Chip select cs
RS I

Register select
RSO

J/0 read
RD

I/O write
WR

1/0 data

l/0 da1a

Timing Control
and

control

Status

------ To CPU To I/0 device ------o-

CS RS 1 RSO Register selected

x x None: data bus in high-impedance

Port A register

Port B register

Control register

Status register

Figure u .. z Example of UO interface unit.

the forward direction. The bits in the status register are used for status condi
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that portA has received a new data item from
the 110 device. Another bit in the status register may indicate that a parity error
has occurred during the transfer.

The interface registers communicate with the CPU through the bidirec
tional data bus. The address bus selects the interface unit through the chip
select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RSl and RSO are usually
connected to the two least significant lines of the address bus. These two inputs

strobe

handshaking

timing diagram

SECTION 1 1 -3 Asynchronous Data Transfer 391

select one of the four registers in the interface as specified in the table accom
panying the diagram. The content of the selected register is transfer into the
CPU via the data bus when the VO read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the VO write
input is enabled.

1 1-3 Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such as a
CPU and an VO interface, are designed independently of each other. If the
registers in the interface share a common clock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi
cate the time at which data is being transmitted. One way of achieving this is
by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred with a control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data. This type of agree
ment between two independent units is referred to as lumdshaking .

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to VO transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
an input or a read transfer. It is customary to specify the asynchronous transfer
between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in
the buses. The sequence of control during an asynchronous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Control
The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.

Aasrith
Pencil

402 CHAI'TER ELEVEN Input-Output ()yganization

the movement of data through the registers. Whenever the F; bit of the control
register is set (F; = 1) and the f;.1 bit is reset (Fi.1 = 1), a clock is generated
causing register R(I + 1) to accept the data from register RJ. The same clock
transition sets f;.1 to 1 and resets F, to 0. This causes the control flag to move
one position to the right together with the data. Data in the registers move
down the FIFO toward the output as long as there are empty locations ahead
ofit. This ripple-through operation stops when the data reach a register R1 with
the next flip-flop F;., being set to 1, or at the last register R4. An overall master
clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F1 is reset, indicating that
register R1 is empty. Data are loaded from the input lines by enabling the clock
in R1 through the insert control line. The same clock sets F, which disables the
input ready control, indicating that the FIFO is now busy and unable to accept
more data. The ripple-through process begins provided that R2 is empty. The
data in R1 are transferred into R2 and F1 is cleared. This enables the input ready
line, indicating that the inputs are now available for another data word. If the
FIFO is full, F1 remains set and the input ready line stays in the 0 state. Note
that the two control lines input ready and insert constitute a destination-initiated
pair of handshake lines.

The data falling through the registers stack up at the output end. The
output ready control line is enabled when the last control flip-flop F4 is set,
indicating that there are valid data in the output register R4. The output data
from R4 are accepted by a destination unit, which then enables the delete
control signal. This resets F., causing output ready to disable, indicating that the
data on the output are no longer valid. Only after the delete signal goes back
to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no
data in R3 and F4 will remain in the reset state. Note that the two control lines
output ready and delete constitute a source-initiated pair of handshake lines.

1 1 -4 Modes of Transfer

Binary information received from an external device is usually stored in mem
ory for later processing. Information transferred from the central computer into
an external device originates in the memory unit. The CPU merely executes the
110 instructions and may accept the data temporarily, but the ultimate source
or destination is the memory unit. Data transfer between the central computer
and 110 devices may be handled in a variety of modes. Some modes use the
CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of
three possible modes:

1. Programmed 110

2. Interrupt-initiated 110

3. Direct memory access (DMA)

Aasrith
Pencil

progTIIPIIPII�d 1/0

interrupt

DM4.

lOP

SEC:TION I H Modes of Transfer 403

Programmed 1/0 operations are the result of 110 instructions written in
the computer program. Each data item transfer is initiated by an instruction
in the program. Usually, the transfer is to and from a CPU register and
peripheral. Other instructions are needed to transfer the data to and from CPU
and memory. Transferring data under program control requires constant mon
itoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU
is required to monitor the interface to see when a transfer can again be made.
It is up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the 110 device.

In the programmed 1/0 method, the CPU stays in a program loop until
the 110 unit indicates that it is ready for data transfer. This is a time-consuming
process since it keeps the processor busy needlessly. It can be avoided by using
an interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device. In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the 110
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed 110 is between CPU and peripheral.
In direct memory access (DMA), the interface transfers data into and out of the
memory unit through the memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access operation
to allow the direct memory 110 transfer. Since peripheral speed is usually
slower than processor speed, I/O-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11�.

Many computers combine the interface logic with the requirements for
direct memory access into one unit and call it an 110 processor (lOP). The lOP
can handle many peripherals through a DMA and interrupt facility. In such
a system, the computer is divided into three separate modules: the memory
unit, the CPU, and the lOP. 110 processors are presented in Sec. 11-7.

Example of Programmed 1/0
In the programmed 110 method, the 110 device does not have direct access to
memory. A transfer from an 1/0 device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.

404 CHAPTER ELEVEN Input-Output Organization

An example of data transfer from an VO device through an interface into
the CPU is shown in Fig. 11-10. The device transfers bytes of data one at a time
as they are available. When a byte of data is available, the device places it in
the VO bus and enables its data valid line. The interface accepts the byte into
its data register and enables the data accepted line. The interface sets a bit in
the status register that we will refer to as an F or "flag" bit. The device can now
disable the data valid line, but it will not transfer another byte until the data
accepted line is disabled by the interface. This is according to the handshaking
procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status
register to determine if a byte has been placed in the data register by the VO
device. This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown
in Fig. 11-1 1 . It is assumed that the device is sending a sequence of bytes
that must be stored in memory. The transfer of each byte requires three
instructions:

1� Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step
3 if set.

3. Read the data register.

Each byte is read into a CPU register and then transferred to memory with a
store instruction. A common VO programming task is to transfer a block of
words from an VO device and store them in a memory buffer. A program that

Figure 11 .. 10 Data ttansfer from VO device to CPU.

Interface
Data bus J/0 bus

Address bus I Data register I
Data valid l/0 CPU l/0 read device

I/O write I Status I F I Data accepted
register

F = Flag bit

SECTION I H Modes of Transfer 40 5

Figure 1 1 .. 1 1 Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21 .

The programmed VO method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the VO device
makes this type of transfer inefficient. To see why this is inefficient, co.nsider
a typical computer that can execute the two instructions that read the status
register and check the flag in 1 fl.S. Assume that the input device transfers its

406 CHAPTER ELEVEN Input-Output Organization

vectored interrupt

110 routines

data at an average rate of 100 bytes per second. This is equivalent to one byte
every 10,000 IJ.S. This means that the CPU will check the flag 10,000 times
between each transfer. The CPU is wasting time while checking the flag instead
of doing some other useful processing task.

Interrupt-Initiated UO
An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the
computer returns to the previous program to continue what it was doing before
the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required VO transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
One is called vectored interrupt and the other, nonvectored interrupt. In a non vec
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch informa
tion to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the VO service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the VO service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations
The previous discussion was concerned with the basic hardware needed to
interface VO devices to a computer system. A computer must also have soft
ware routines for controlling peripherals and for transfer of data between the
processor and peripherals. VO routines must issue control commands to acti
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the VO software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DMA transfer, the
VO software must initiate the DMA channel to start its operation.

priority interrupt

polling

SECTION 1 1 ·5 Priority Interrupt 407

Software control of input-output equipment is a complex undertaking.
For this reason VO routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included within
the operating system. Most operating systems are supplied with a variety of
VO programs to support the particular line of peripherals offered for the
computer. VO routines are usually available as operating system procedures
and the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

1 1 -5 Priority Interrupt

Data transfer between the CPU and an VO device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to
communicate with the CPU. The readiness of the device can be determined
from an interrupt signal. The CPU responds to the interrupt request by storing
the return address from PC into a memory stack and then the program
branches to a service routine that processes the required transfer. As discussed
in Sec. 8-7, some processors also push the current PSW (program status word)
onto the stack and load a new PSW for the service routine. We neglect the PSW
here in order not to complicate the discussion of VO interrupts.

In a typical application a number of VO devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt. There
is also the possibility that several sources will request service simultaneously.
In this case the system must also decide which device to service first.

A priority interrupt is a system that establishes a priority over the various
sources to determine which condition is to be serviced first when two or more
requests arrive simultaneously. The system may also determine which condi
tions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests which, if
delayed or interrupted, could have serious consequences. Devices with high
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt the
computer at the same time, the computer services the device, with the higher
priority first.

Establishing the priority of simultaneous interrupts can be done by soft
ware or hardware. A polling procedure is used to identify the highest-priority
source by software means. In this method there is one common branch address
for all interrupts. The program that takes care of interrupts begins at the branch
address and polls the interrupt sources in sequence. The order in wJ;tich they
are tested determines the priority of each interrupt. The highest-priority source
is tested first, and if its interrupt signal is on, control branches to a service
routine for this source. Otherwise, the next-lower-priority source is tested, and

Aasrith
Pencil

C H A P T E R T W E L V E

Memory Organization

IN THIS CHAPTER

12-1 Memo<y Hierarchy

12-2 Main Memory

12-3 Auxiliary Memory
1:2-4 Associative Memory
12-S Cache Memory

12-6 Virtual Memory

12-7 Memory Manageroo\t Hardware

12-1 Memory Hierarchy

The memory unit Is an essential component in any digital romputer since It Is
needed for sto""'g programs and data. A very smAll computer with a Umited
application may be able to ful6ll its intend.ed task without the nH<I of addi·
tiona! storage capacity. Most general·pwpose computers would run more
efficiently if they were equipped with additional storage beyond the capadty
of the main memory. There is just not enough space in one memory unit to
accommodate all the pn>gTams used in a typical computer. Moreover, most
computer users accumulate and continue to accumulate large amounts of
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the m11in mmwry. Devices that provide backup storage are
called auxiliary mmtary. The most common auxiliary memory devices used in
computer systems are magnetic disks and tapes. They are used for storing
system.programs, large data 6Jes, and other backup information. Only pro
grams and data currently needed by the processor reside in main memory. AU

445

446 OIAPTER TWELVE Memory Orcanization

other information Is stored in auxiliary memory and transferred to main mem
ory when needed.

The total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity
awdliary memory to a relatively faster main memory, to an even smaller and
faster cache memory accessible to the high-speed processing logic. Figure U-1
illustrates the components ina typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu
pies a central position by being able to communicate directly with the CPU and
with auxiliary memory devices through an UO processor. When programs not
residing in main memory are needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are trans
ferred into auxiliary memory to provide space for currently used programs and
data.

A special very-high·speed memory called a CiJChL is sometimes used to
increase the speed of processing by making current programs and data avail
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usuaUy faster than main memory access
time, with the result that processing speed is limited primarily by the speed
of main memory. A technique used to compensate for the mismatch in oper·
atin.g speeds is to employ an extremely fast, small cache between the CPU and
main memory whose access time Is dose to processor logic dock cycle time.
The cache is u!led for storing segments of programs currently being executed
in the CPU and temporary data frequently needed in the present calculations.

flcu"' t 2·1 Memory hltl'li'Chy in • C<>ft�PU<<r symm.

Auxlltvy mem o l)'

I M�nd.iC I UI'O I
�"'"""'"" M&in

I �"""' I - """"""'
di.t�>b I l

CPtJ r-- Cxbe
_,

multiprogramming

SECTION 12 · 1 Memory Hierarchy 44 7

By making programs and data available at a rapid rate, it is possible to increase
the performance rate of the computer.

While the VO processor manages data transfers between auxiliary mem
ory and main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy system. The reason for having two
or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases
and the access time of the memory becomes longer. The auxiliary memory has
a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy
is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavily used, while
the auxiliary memory holds those parts that are not presently used by the CPU.
Moreover, the CPU has direct access to both cache and main memory but not
to auxiliary memory. The transfer from auxiliary to main memory is usually
done by means of direct memory access of large blocks of data. The typical
access time ratio between cache and main memory is about 1 to 7. For example,
a typical cache memory may have an access time of 100 ns, while main memory
access time may be 700 ns. Auxiliary memory average access time is usually
1000 times that of main memory. Block size in auxiliary memory typically
ranges from 256 to 2048 words, while cache block size is typically from 1 to 16
words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro
gramming, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep
all parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an VO
transfer is required. The CPU initiates the VO processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory. When the program or a segment of the

448 CHAPTER TWELVE Memory Organization

random-access
memory (RAMI

read-rmly memory
(ROM)

bootstrap loader

crmtpt�ter startup

program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality
of information stored in a computer system. It is the task of the operating
system to maintain in main memory a portion of this information that is
currently active. The part of the computer system that supervises the flow of
information between auxiliary memory and main memory is called the memory
management system. The hardware for a memory management system is pre
sented in Sec. 12-7.

12-2 Main Memory

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges that
are applied to capacitors. The capacitors are provided inside the chip by MOS
transistors. The stored charge on the capacitors tend to discharge with time and
the capacitors must be periodically recharged by refreshing the dynamic mem
ory. Refreshing is done by cycling through the words every few milliseconds
to restore the decaying charge. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip. The static
RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish
it from a read-only memory, although ROM is also random access. RAM is used
for storing the bulk of the programs and data that are subject to change. ROM
is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the
computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is
turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the

bidirectional bus

SECTION 1 2·2 Main Memory 449

first address of the bootstrap loader. The bootstrap program loads a portion
of the operating system from disk to main memory and control is then trans
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon
strate the chip interconnection, we will show an example of a 1024 x 8 memory
constructed with 128 x 8 RAM chips and 512 x 8 ROM chips.

RAM and ROM Chips
A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state
buffers. A three-state buffer output can be placed in one of three possible
states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high
impedance state. The logic 1 and 0 are normal digital signals. The high
impedance state behaves like an open circuit, which means that the output
does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

Figure 12-2 Typical RAM chip.

Chip select I CS I

Chip select 2 CS2

Read RD 1 28 X 8
8-bit data bus

RAM

Write WR

7-bit address AD7

(a) Block diagram

CSI CS2 RD WR Memory function State of data bus

0 0 X X Inhibit High-impedance
X Inhibit High-impedance

Inhibit High-impedance
Write Input data to RAM

X Read Output data from RAM
X X lnltibit High-impedance

(b) Function table

450 CHAPTER TWELVE Memory Organization

address and an 8-bit bidirectional data bus. The read and write inputs specie:.
the memory operation and the two chips select (CS) control inputs are fc o
enabling the chip only when it is selected by the microprocessor. The availahL.
ity of more than one control input to select the chip facilitates the decoding c :
the address lines when multiple chips are used in the microcomputer. The rea.:
and write inputs are sometimes combined into one line labeled R!W. When the
chip is selected, the two binary states in this line specify the two operation>
of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RA.\�
chip. The unit is in operation only when CS1 = 1 and CS2 = 0. The bar on tor
of the second select variable indicates that this input is enabled when it is equa.:
to 0. If the chip select inputs are not enabled, or if they are enabled but the read
or write inputs are not enabled, the memory is inhibited and its data bus is in
a high-impedance state. When CS1 = 1 and CS2 = 0, the memory can be
placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input
lines. When the RD input is enabled, the content of the selected byte is placed
into the data bus. The RD and WR signals control the memory operation as well
as the bus buffers associated with the bidirectional data bus .

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is
possible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM . For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the

· unit to operate. Otherwise, the data bus is in a high-impedance state. There
is no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map
The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM. The
interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM chips
available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a
memory address map, is a pictorial representation of assigned address space for
each chip in the system.

To demonstrate with a particular example, assume that a computer sys
tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips

5 1 2 X 8
ROM

SECTION 1 2·2 Main Memory 45 1

8-bit data bus

Figure 12-3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map for
this configuration is shown in Table 12-1 . The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address
bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in
this example and are assumed to be zero. The small x's under the address bus
lines designate those lines that must be connected to the address inputs in each
chip. The RAM chips have 128 bytes and need seven address lines. The ROM
chip has 512 bytes and needs 9 address lines. The x's are always assigned to
the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9
for the ROM. It is now necessary to distinguish between four RAM chips by
assigning to each a different address. For this particular example we choose bus
lines 8 and 9 to represent four distinct binary combinations. Note that any other
pair of unused bus lines can be chosen for this purpose. The table clearly shows
that the nine low-order bus lines constitute a memory space for RAM equal to
29 = 512 bytes. The distinction between a RAM and ROM address is done with
another bus line. Here we choose line 10 for this purpose. When line 10 is 0,
the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal

Component address 10 9 4 2

RAM I ()()()()...007F 0 0 0· X X X X X X X
RAM 2 OOSO-OOFF 0 0 I X X X X X X X
RAM 3 0100-017F 0 0 X X X X X X X
RAM 4 0180-{)1 FF 0 I X X X X X X X
ROM 0200-03FF I X X X X X X X X X

452 CHAITER TWELVE Memory Organization

subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo
nent is determined from the x's associated with it. These x's represent a binan·
number that can range from an all-O's to an all-1's value.

Memory Connection to CPU
RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus . This is done through a 2 x 4 decoder whose outputs go to the CS1 inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1 . The other chip select input in the ROM is connected to the RD control
line for the ROM chip to be enabled only during a read operation. Address bus
lines 1 to 9 are applied to the input address of ROM without going through the
decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The
data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions .

The example just shown gives an indication of the interconnection com
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips . The designer must establish a memory map that assigns addresses to
the various chips from which the required connections are determined .

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are
magnetic disks and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems. AI-

CPU

Address bus

1 6 - 1 1 10 9 8 7 - 1 RD WR Data bus

I
r----

I Decoder J 3 2 I 0

CSI -
CS2 128 X 8 ----f- --- RD RAM I

Data

-- WR
AD7

CSI

CS2
128 X 8 f- --- RD RAM 2

Data ..__
--- WR

AD7

CS I -
CS2

128 X 8 f- --- RD RAM 3
Data ----

--- WR
AD7

CSI -
CS2

128 X 8 f- --- RD RAM 4
Data ----

--- WR

AD7

�
CSI
CS2

}AD9
128 X 8 Data ---

8 ROM 9
Figure 12.-4 Memory connection to the CPU.

453

454 CHAPTER TWELVE Memory Organization

though the physical properties of these storage devices can be quite complex,
their logical properties can be characterized and com pared by a few parame
ters. The important characteristics of any device are its access mode, access
time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usually
much longer than the transfer time, auxiliary storage is organized in records
or blocks. A record is a specified number of characters or words. Reading or
writing is always done on entire records. The transfer rate is the number of
characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drum is a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface
as it passes a stationary mechanism called a write head . Stored bits are detected
by a change in magnetic field produced by a recorded spot on the surface as
it passes through a read head. The amount of surface available for recording in
a disk is greater than in a drum of equal physical size. Therefore, more
information can be stored on a disk than on a drum of comparable size. For
this reason, disks have replaced drums in more recent computers.

Magnetic Disks
A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called
sectors. In most systems, the minimum quantity of information which can be
transferred is a sector. The subdivision of one disk surface into tracks and
sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems, separate read/write heads are provided for each track in each surface.
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and

SECTION 1 2·3 Auxiliary Memory 455

Tracks

Read/write
head

Figure 12�5 Magnetic disk.

recognize the sectors. A disk system is addressed by address bits that specify
the disk number, the disk surface, the sector number and the track within the
sector. After the read/write heads are positioned in the specified track, the
system has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sector
has been reached. Disks may have multiple heads and simultaneous transfer
of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near
the center of the disk If bits are recorded with equal density, some tracks will
contain more recorded bits than others. To make all the records in a sector of
equal length, some disks use a variable recording density with higher density
on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks . A disk drive with remov
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording material.
There are two sizes commonly used, with diameters of 5 .25 and 3. 5 inches. The
3 .5-inch disks are smaller and can store more data than can the 5.25-inch disks.
Floppy disks are extensively used in personal computers as a medium for
distributing software to computer users.

Magnetic Tape
A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording

456 CHAI'TER TWELVE Memory Organization

content addressable
memory

medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re
verse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control
recognizes the beginning of a gap. A tape unit is addressed by specifying the
record number and the number of characters in the record. Records may be of
fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbol's binary equivalent. An account number may be searched
in a file to determine the holder's name and account status. The established
way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The
number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been devel
oped to minimize the number of accesses while searching for an item in a
random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called
an associative memory or content addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an associa
tive memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel searches by data association. Moreover, searches can be done on

SECTION 1 2-4 Associative Memory 457

an entire word or on a specific field within a word. An associative memory is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica
tions where the search time is very critical and must be very short.

Hardware Organization
The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all l' s. Otherwise, only those bits in the argument
that have l's in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Figure 12 .. 6 Block diagram of associative memory.

Input

Read

Write

Output

458 CHAPTER TWELVE Memory Organization

specifies how the reference to memory is made. To illustrate with a numerica;
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1's in these positions.

A

K

Word 1

Word 2

101 111100

111 000000

100 111100

101 000001

no match

match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C9 is the cell for bit
j in word i. A bit Ai in the argument register is compared with all the bits in
column j of the array provided that Ki = 1. This is done for all columns
j = 1, 2, . . . , n. If a match occurs between all the unmasked bits of the argu
ment and the bits in word i, the corresponding bit M1 in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, M1 is cleared to 0.

Figure 12� 7 Associative memory of m word, n cells per word.

Word I � 5]

Word i [3;] 5]

Word m � �
Bit I Bit j Bit n

SECTION 1 2-4 Associative Memory 459

The internal organization of a typical cell C,i is shown in Fig. 12-8. It
consists of a flip-flop storage element F;i and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The match
logic compares the content of the storage cell with the corresponding un
masked bit of the argument and provides an output for the decision logic that
sets the bit in M,.

Match Logic
The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if Ai = F,i for j = 1, 2, . . . , n . Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

where xi = 1 if the pair of bits in position j are equal; otherwise, xi = 0.
For a word i to be equal to the argument in A we must have all xi variables

equal to 1. This is the condition for setting the corresponding match bit M, to
1. The Boolean function for this condition is

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12 .. 8 One cell of associative memory.

Output

460 CHAPTER T'WELVE Memory Organization

We now include the key bit K; in the comparison logic. The requirement
is that if K; = 0, the corresponding bits of A; and f1; need no comparison. Only
when K; = 1 must they be compared. This requirement is achieved by ORing
each term with Kf, thus:

{X·
X· + K' = J J J 1

if K; = 1
if K; = O

When K; = 1, we have Kf = 0 and x; + 0 = x; . When K; = 0, then Kf = 1 and
x; + 1 = 1. A term (x; + Kf) will be in the 1 state if its pair of bits is not
compared. This is necessary because each term is ANDed with all other terms
so that an output of 1 will have no effect. The comparison of the bits has an
effect only when K; = 1 .

The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M, = (x1 + Kl)(x2 + K2)(x3 + K3) · · · (x, + K�)

Each term in the expression will be equal to 1 if its corresponding K; = 0. If
K; = 1, the term will be either 0 or 1 depending on the value of X;. A match will
occur and M, will be equal to 1 if all terms are equal to 1 .

I f we substitute the original definition o f x;, the Boolean function above
can be expressed as follows:

"

M, = IT (A; F;; + Af Fij + Kf)
j = 1

where II is a product symbol designating the AND operation of all n terms. We
need m such functions, one for each word i = 1, 2, 3, . . . , m .

The circuit for matching one word is shown in Fig. 12-9. Each cell requires
two AND gates and one OR gate. The inverters for A; and K; are needed once
for each column and are used for all bits in the column. The output of all OR
gates in the cells of the same word go to the input of a common AND gate to
generate the match signal for M, . M, will be logic 1 if a match occurs and 0 if
no match occurs. Note that if the key register contains all 0' s, output M, will
be a 1 irrespective of the value of A or the word. This occurrence must be
avoided during normal operation.

Read Operation
If more than one word in memory matches the unmasked argument field, all
the matched words will have 1's in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying a read signal to each word
line whose corresponding M, bit is a 1 .

SECTION IH Associative Memory 46 1

M;

Figure 12 .. 9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two
identical items'under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M; directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation
An associative memory must have a write capability for storing the information
to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device a random
access memory for writing and a content addressable memory for reading. The
advantage here is that the address for input can be decoded as in a random
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder to d lines,
where m = 2'.

462 CHAJ'Tl;R TWELVE Memory Organization

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1 . An
unwanted word when deleted from memory can be cleared to all 0' s if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the Ki bits) with the argument word
so that only active words are compared.

12-5 Cache Memory

Analysis of a large number of typical programs has shown that the references
to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of

locality of reference locality of reference . The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, memory
references to data also tend to be localized. Table-lookup procedures repeat
edly refer to that portion in memory where the table is stored. Iterative proce
dures refer to common memory locations and array of numbers are confined
within a local portion of memory. The result of all these observations is the
locality of reference property, which states that over a short interval of time,
the addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. It is placed between the CPU and main memory as illustrated
in Fig. 12-1 . The cache memory access time is less than the access time of main
memory by a factor of 5 to 10. The cache is the fastest component in the memory
hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the aver-

hit ratio

mapping

SECTION 1 2-5 Cache Memory 463

age memory access time will approach the access time of the cache. Although
the cache is only a small fraction of the size of main memory, a large fraction
of memory requests will be found in the fast cache memory because of the
locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. If the word is found in the cache, it is
read from the fast memory. If the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a
quantity called hit ratio . When the CPU refers to memory and finds the word
in cache, it is said to produce a hit . If the word is not found in cache, it is in
main memory and it counts as a miss . The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio
verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time . Therefore,
very little or no time must be wasted when searching for words in the cache.
The transformation of data from main memory to cache memory is referred to
as a mapping process. Three types of mapping procedures are of practical
interest when considering the organization of cache memory:

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

To help in the discussion of these three mapping procedures we wi)l use a
specific example of a memory organization as shown in Fig. 12-10. The main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is

464 CHAPTER TWELVE Memory Organization

Main memory
32K X 1 2 I Cache memory f-

5 1 2 X 1 2

Figure 12�10 Example of cache memory.

CPU

a duplicate copy in main memory. The CPU communicates with both memo
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from main
memory and the word is then transferred to cache.

Associative Mapping
The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11 . The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal number and its corresponding 12 -bit word is shown as a
four-digit octal number. A CPU address of 15 bits is placed in the argument
register and the associative memory is searched for a matching address. If the

Figure 12 .. 1 1 Associative mapping cache (all numbers in octal).

CPU address (1 5 bits)

I- Address Data �
0 1 0 0 0 3 4 5 0

0 2 7 7 7 6 7 I 0

2 2 3 4 5 I 2 3 4

tag field

SECTION 1 2-5 Cache Memory 465

address is found, the corresponding 12-bit data is read and sent to the CPU.
If no match occurs, the main memory is accessed for the word. The ad
dress--data pair is then transferred to the associative cache memory. If the cache
is full, an address--data pair must be displaced to make room for a pair that is
needed and not presently in the cache. The decision as to what pair is replaced
is determined from the replacement algorithm that the designer chooses for the
cache. A simple procedure is to replace cells of the cache in round-robin order
whenever a new word is requested from main memory. This constitutes a
first-in first-out (FIFO) replacement policy.

Direct Mapping
Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using
a random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2' words in cache memory and 2" words in
main memory. The n-bit memory address is divided into two fields: k bits for
the index field and n - k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache. The

Figure 12�12 Addressing relationships between main and cache memories.

6 bits 9 bits

·�
Index

I
I

00 000 32K X 1 2 000 5 1 2 X 1 2
Octal 1 Cache memory

Octal Main memory address Address = 9 bits
address Data = l 2 bits . Address = I S bits 777

Data = 1 2 bits
77 777

466 CHAPTER TWELVE Memory Organization

Memory
address

00000

00777

0 1 000

0 1 777

02000

02777

Memory data

1 2 2 0

2 3 4 0

3 4 5 0

4 5 6 0

5 6 7 0

6 7 I 0

(a) Main memory

Index
address Tag

000 0 0

777 0 2

Data

1 2 2 0

6 7 I 0

(b) Cache memory

Figure 12�13 Direct mapping cache organization.

tag field of the CPU address is compared with the tag in the word read from
the cache. If the two tags match, there is a hit and the desired data word is in
cache. If there is no match, there is a miss and the required word is read from
main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but differenttags are accessed repeatedly. However, this possibility
is minimized by the fact that such words are relatively far apart in the address
range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the nu
merical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU
now wants to access the word at address 02000. The index address is 000, so
it is used to access the cache. The two tag_s are then compared. The cache tag
is 00 but the address tag is 02, which does not produce a match. Therefore, the
main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data
of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of B words is shown in Fig. 12-14.

Block 0

Block I

Index Tag Data

000 0 I 3 4 5 0

007 0 I 6 5 7 8

0 1 0

0 1 7

770

Block 63

777

SECTION 1 2-5 Cache Memory 467

Tag I Block I Word

Index

Figure 12-14 Direct mapping cache with block size of 8 words.

The index field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 x 8 = 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common
to all eight words of the same block. Every time a miss occurs, an entire block
of eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with a
larger block size because of the sequential nature of computer programs.

Set-Associative Mapping
It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ
ization, called set-associative mapping, is an improvement over the direct
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag-data items in one word of cache is said to
form a set. An example of a set-associative cache organization for a set size of
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 x 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In general, a set-associative cache of set size k will accommo
date k words of main memory in each word of cache.

468 CHAPTER lWELVE Memory Organization

replacement
algorithms

Index Tag

000 0 I

777 0 2

Data

3 4 5 0

6 7 I 0

Tag Data

0 2 5 6 7 0

0 0 2 3 4 0

Figure 12 .. 15 Two;way set .. associative mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index address
000. Similarly, the words at addresses 02777 and 00777 are stored in cache at
index address 777. When the CPU generates a memory request, the index value
of the address is used to access the cache. The tag field of the CPU address is
then compared with both tags in the cache to determine if a match occurs. The
comparison logic is done by an associative search of the tags in the set similar
to an associative memory search: thus the name "set-associative." The hit ratio
will improve as the set size increases because more words with the same index
but different tags can reside in cache. However, an increase in the set size
increases the number of bits in words of cache and requires more complex
comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is
necessary to replace one of the tag-data items with a new value. The most
common replacement algorithms used are: random replacement, first-in, first
out (FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag-data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least recently
used by the CPU. Both FIFO and LRU can be implemented by adding a few
extra bits in each word of cache.

Writing into Cache
An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the system can proceed.

write-through

write-back

valid bit

SECTION 12-6 Virrual Memory 469

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being up
dated in parallel if it contains the word at the specified address. This is called
the write-through method. This method has the advantage that main memory
always contains the same data as the cache. This characteristic is important in
systems with direct memory access transfers. It ensures that the data residing
in main memory are valid at all times so that an 110 device communicating
through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy
in main memory is out of date, since requests from the word are filled from
the cache. It is only when the word is displaced from the cache that an accurate
copy need be rewritten into main memory. Analytical results indicate that the
number of memory writes in a typical program ranges between 10 and 30
percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to
include with each word in cache a valid bit to indicate whether or not the word
contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of
a particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data. Thus
the initialization condition has the effect of forcing misses from the cache until
it fills with valid data.

12-6 Virtual Memory

In a memory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large
computer systems that permit the user to construct programs as though a large

4 70 CHAPTER TWELVE Memory Organization

address space
memory space

memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a physical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set
of such addresses the address space . An address in main memory is called a
location or physical address . The set of such locations is called the memory space .
Thus the address space is the set of addresses generated by programs as they
reference instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of
32K words (K = 1024). Fifteen bits are needed to specify a physical address in

· memory since 32K = 215• Suppose that the computer has available auxiliary
memory for storing 220 = 1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32 main memories. Denot
ing the address space by N and the memory space by M, we then have for this
example N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program 1 is currently being executed in the CPU.
Program 1 and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the total
address space at their disposal. Moreover, the address field of the instruction
code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for

Auxiliary memory

Program I

Data I , I

Data I , 2

Program 2

Data 2. I

Address space
N = I 024K = 2"

�

SECTION 1 2-6 Virtual Memory 4 7 1

Main memory

Program I

Data I , I

Memory space
M = 32k = 2"

Figure 12 .. 16 Relation between address and memory space in a virtual
memory system.

efficient transfers, auxiliary storage moves an entire record to the main mem
ory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation,
which means that every address is translated inunediately as a word is refer
enced by CPU.

The mapping table may be stored in a separate memory as shown in
Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the table

Figure 12 .. 17 Memory table for mapping a virtual address.

Virtual address

Memory
mapping

table
Main

memory

4 72 CHAPTER TWELVE Memory Organization

pages and blocks

page frame

takes space from main memory and two accesses to memory are required with
the program running at half speed. A third alternative is to use an associative
memory as explained below.

Address Mapping Using Pages
The table implementation of the address mapping is simplified if the informa
tion in the address space and the memory space are each divided into groups
of fixed size. The physical memory is broken down into groups of equal size
called blocks, which may range from 64 to 4096 words each. The term page refers
to groups of address space of the same size. For example, if a page or block
consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although
both a page and a block are split into groups of 1K words, a page refers to the
organization of address space, while a block refers to the organization of
memory space. The programs are also considered to be split into pages.
Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term "page frame" is sometimes used
to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page number
address and a line within the page. In a computer with '1! words per page, p
bits are used to specify a line address and the remaining high-order bits of the
virtual address specify the page number. In the example of Fig. 12-18, a virtual
address has 13 bits. Since each page consists of 210 = 1024 words, the high
order three bits of a virtual address will specify one of the eight pages and the
low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 12-19. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual address
of 13 bits. The three high-order bits of the virtual address specify a page
number and also an address for the memory-page table. The content of the

Page 0

Page I

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7
Address space
N = 8K = 2 1 3

SECTION 1 1-6 Virtual Memory 4 7 3

Block 0

Block I

Block 2

Block 3

Memory space
M = 4K = 2 1 2

Figure 12 .. 18 Address space and memory space split into groups of lK words.

word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number
thus read is transferred to the two high-order bits of the main memory address
register. The line number from the virtual address is transferred into the 10
low-order bits of the memory address register. A read signal to main memory

Figure 12 .. 19 Memory table in a paged system.

Memory page table

4 7 4 CHAPTER TWELVE Memory Organization

transfers the content of the word to the main memory buffer register ready to
be used by the CPU. If the presence bit in the word read from the page table
is 0, it signifies that the content of the word referenced by the virtual address
does not reside in main memory. A call to the operating system is then
generated to fetch the required page from auxiliary memory and place it into
main memory before resuming computation.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage
utilization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with n pages and m blocks would require a memory-page
table of n locations of which up to m blocks will be marked with block numbers
and all others will be empty. As a second numerical example, consider an
address space of 1024K words and memory space of 32K words. If each page
or block contains 1K words, the number of pages is 1024 and the number of
blocks 32. The capacity of the memory-page table must be 1024 words and only
32 locations may have a presence bit equal to 1. At any given time, at least 992
locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In this
way the size of the memory is reduced and each location is fully utilized. This
method can be implemented by means of an associative memory with each
word in memory containing a page number together with its corresponding

Figure 12 .. 20 An associative memory page table.

Virtual address

Page no.
r--"-.
L, __ o--'-1'--=L�in�e .::nu.::m.::b.::e�r _ __Jj Argument register

Key register

0 0 I I I

0 I 0 0 0
Associative memory

I 0 I 0 I

I I 0 I 0

............... �
Page no. Block no.

page fault

SECTION 1 1·6 Virtual Memory 4 75

block number. The page field in each word is compared with the page number
in the virtual address. If a match occurs, the word is read from memory and
its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The
page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the
5-bit word is read out from memory. The corresponding block number, being
in the same word, is transferred to the main memory address register. If no
match occurs, a call to the operating system is generated to bring the required
page from auxiliary memory.

Page Replacement
A virtual memory system is a combination of hardware and software tech
niques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
page, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hardware
mapping mechanism and the memory management software together consti
tute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still
in auxiliary memory. This condition is called page fault . When page fault occurs,
the execution of the present program is suspended until the required page is
brought into main memory. Since loading a page from auxiliary memory to
main memory is basically an VO operation, the operating system assigns this
task to the VO processor. In the meantime, control is transferred to the next
program in memory that is waiting to be processed in the CPU. Later, when
the memory block has been assigned and the transfer completed, the original
program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then
transferred from auxiliary memory to main memory. If main memory is full,
it would be necessary to remove a page from a memory block to make room
for the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in,

4 76 CHAI'TER TWELVE Memory Organization

FIFO first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for
replacement the page that has been in memory the longest time. Each time a
page is loaded into memory, its identification number is pushed into a FIFO
stack. FIFO will be full whenever memory has no more empty blocks. When
a new page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain circum
stances pages are removed and loaded from memory too frequently.

LRU The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate
for removal than the least recently loaded page as in FIFO. The LRU algorithm
can be implemented by associating a counter with every page that is in main
memory. When a page is referenced, its associated counter is set to zero. At
fixed intervals of time, the counters associated with all pages presently in
memory are incremented by 1. The least recently used page is the page with
the highest count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

12-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory
it becomes necessary to move programs and data around the memory, to vary
the amount of memory in use by a given program, and to prevent a program
from changing other programs. The demands on computer memory brought
about by multiprogramming have created the need for a memory management
system. A memory management system is a collection of hardware and soft
ware procedures for managing the various programs residing in memory. The
memory management software is part of an overall operating system available
in many computers. Here we are concerned with the hardware unit associated
with the memory management system.

The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory
references into physical memory addresses

2. A provision for sharing common programs stored in memory by differ
ent users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to
the paging system described in Sec. 12-6. The fixed page size used in the virtual

Aasrith
Line

Aasrith
Line

